metadata
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: zephyr-7b-dpo-qlora
results: []
zephyr-7b-dpo-qlora
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5325
- Rewards/chosen: -1.2325
- Rewards/rejected: -2.0565
- Rewards/accuracies: 0.7656
- Rewards/margins: 0.8240
- Logps/rejected: -457.4398
- Logps/chosen: -373.4022
- Logits/rejected: 0.7596
- Logits/chosen: 0.5001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6916 | 0.05 | 100 | 0.6912 | 0.0059 | 0.0019 | 0.6484 | 0.0041 | -251.6075 | -249.5596 | -2.2040 | -2.2621 |
0.655 | 0.1 | 200 | 0.6498 | -0.0559 | -0.1762 | 0.7070 | 0.1203 | -269.4106 | -255.7421 | -2.1011 | -2.1614 |
0.6342 | 0.16 | 300 | 0.6146 | -0.3407 | -0.6269 | 0.7031 | 0.2862 | -314.4839 | -284.2224 | -1.9037 | -1.9793 |
0.6121 | 0.21 | 400 | 0.5946 | -0.4657 | -0.8916 | 0.7031 | 0.4259 | -340.9551 | -296.7203 | -1.8717 | -1.9543 |
0.5973 | 0.26 | 500 | 0.5938 | -0.3681 | -0.7766 | 0.7305 | 0.4085 | -329.4522 | -286.9666 | -1.8440 | -1.9282 |
0.5473 | 0.31 | 600 | 0.5774 | -0.6893 | -1.2264 | 0.7344 | 0.5371 | -374.4341 | -319.0812 | -1.6815 | -1.7726 |
0.5792 | 0.37 | 700 | 0.5709 | -0.6635 | -1.2100 | 0.7578 | 0.5465 | -372.7989 | -316.5072 | -1.4783 | -1.5775 |
0.5194 | 0.42 | 800 | 0.5590 | -1.0208 | -1.6453 | 0.7461 | 0.6245 | -416.3269 | -352.2357 | -0.3791 | -0.5486 |
0.5367 | 0.47 | 900 | 0.5492 | -1.1477 | -1.8521 | 0.7266 | 0.7044 | -437.0040 | -364.9276 | -0.0908 | -0.2899 |
0.5575 | 0.52 | 1000 | 0.5450 | -1.1704 | -1.9048 | 0.7344 | 0.7344 | -442.2755 | -367.1964 | 0.2761 | 0.0498 |
0.5507 | 0.58 | 1100 | 0.5429 | -1.1040 | -1.8671 | 0.7422 | 0.7631 | -438.5026 | -360.5551 | 0.5339 | 0.2877 |
0.5305 | 0.63 | 1200 | 0.5366 | -1.1557 | -1.9243 | 0.7578 | 0.7686 | -444.2217 | -365.7241 | 0.7350 | 0.4755 |
0.5171 | 0.68 | 1300 | 0.5304 | -1.3741 | -2.1678 | 0.7656 | 0.7937 | -468.5735 | -387.5681 | 0.7686 | 0.5029 |
0.4875 | 0.73 | 1400 | 0.5321 | -1.3228 | -2.1513 | 0.7578 | 0.8285 | -466.9267 | -382.4329 | 0.8566 | 0.5926 |
0.5216 | 0.78 | 1500 | 0.5326 | -1.2006 | -2.0034 | 0.7617 | 0.8028 | -452.1298 | -370.2103 | 0.7189 | 0.4630 |
0.4894 | 0.84 | 1600 | 0.5327 | -1.2300 | -2.0556 | 0.7656 | 0.8256 | -457.3565 | -373.1585 | 0.7405 | 0.4828 |
0.5179 | 0.89 | 1700 | 0.5326 | -1.2313 | -2.0558 | 0.7656 | 0.8245 | -457.3720 | -373.2860 | 0.7604 | 0.5012 |
0.5534 | 0.94 | 1800 | 0.5325 | -1.2309 | -2.0558 | 0.7656 | 0.8249 | -457.3779 | -373.2437 | 0.7550 | 0.4957 |
0.5539 | 0.99 | 1900 | 0.5325 | -1.2325 | -2.0565 | 0.7656 | 0.8240 | -457.4398 | -373.4022 | 0.7596 | 0.5001 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0