File size: 5,582 Bytes
43c1f85
 
 
 
 
 
 
 
 
df12624
43c1f85
 
 
 
 
 
df12624
43c1f85
df12624
43c1f85
df12624
 
 
 
 
 
 
 
 
43c1f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df12624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c1f85
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: zephyr-7b-dpo-qlora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-qlora

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5325
- Rewards/chosen: -1.2325
- Rewards/rejected: -2.0565
- Rewards/accuracies: 0.7656
- Rewards/margins: 0.8240
- Logps/rejected: -457.4398
- Logps/chosen: -373.4022
- Logits/rejected: 0.7596
- Logits/chosen: 0.5001

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6916        | 0.05  | 100  | 0.6912          | 0.0059         | 0.0019           | 0.6484             | 0.0041          | -251.6075      | -249.5596    | -2.2040         | -2.2621       |
| 0.655         | 0.1   | 200  | 0.6498          | -0.0559        | -0.1762          | 0.7070             | 0.1203          | -269.4106      | -255.7421    | -2.1011         | -2.1614       |
| 0.6342        | 0.16  | 300  | 0.6146          | -0.3407        | -0.6269          | 0.7031             | 0.2862          | -314.4839      | -284.2224    | -1.9037         | -1.9793       |
| 0.6121        | 0.21  | 400  | 0.5946          | -0.4657        | -0.8916          | 0.7031             | 0.4259          | -340.9551      | -296.7203    | -1.8717         | -1.9543       |
| 0.5973        | 0.26  | 500  | 0.5938          | -0.3681        | -0.7766          | 0.7305             | 0.4085          | -329.4522      | -286.9666    | -1.8440         | -1.9282       |
| 0.5473        | 0.31  | 600  | 0.5774          | -0.6893        | -1.2264          | 0.7344             | 0.5371          | -374.4341      | -319.0812    | -1.6815         | -1.7726       |
| 0.5792        | 0.37  | 700  | 0.5709          | -0.6635        | -1.2100          | 0.7578             | 0.5465          | -372.7989      | -316.5072    | -1.4783         | -1.5775       |
| 0.5194        | 0.42  | 800  | 0.5590          | -1.0208        | -1.6453          | 0.7461             | 0.6245          | -416.3269      | -352.2357    | -0.3791         | -0.5486       |
| 0.5367        | 0.47  | 900  | 0.5492          | -1.1477        | -1.8521          | 0.7266             | 0.7044          | -437.0040      | -364.9276    | -0.0908         | -0.2899       |
| 0.5575        | 0.52  | 1000 | 0.5450          | -1.1704        | -1.9048          | 0.7344             | 0.7344          | -442.2755      | -367.1964    | 0.2761          | 0.0498        |
| 0.5507        | 0.58  | 1100 | 0.5429          | -1.1040        | -1.8671          | 0.7422             | 0.7631          | -438.5026      | -360.5551    | 0.5339          | 0.2877        |
| 0.5305        | 0.63  | 1200 | 0.5366          | -1.1557        | -1.9243          | 0.7578             | 0.7686          | -444.2217      | -365.7241    | 0.7350          | 0.4755        |
| 0.5171        | 0.68  | 1300 | 0.5304          | -1.3741        | -2.1678          | 0.7656             | 0.7937          | -468.5735      | -387.5681    | 0.7686          | 0.5029        |
| 0.4875        | 0.73  | 1400 | 0.5321          | -1.3228        | -2.1513          | 0.7578             | 0.8285          | -466.9267      | -382.4329    | 0.8566          | 0.5926        |
| 0.5216        | 0.78  | 1500 | 0.5326          | -1.2006        | -2.0034          | 0.7617             | 0.8028          | -452.1298      | -370.2103    | 0.7189          | 0.4630        |
| 0.4894        | 0.84  | 1600 | 0.5327          | -1.2300        | -2.0556          | 0.7656             | 0.8256          | -457.3565      | -373.1585    | 0.7405          | 0.4828        |
| 0.5179        | 0.89  | 1700 | 0.5326          | -1.2313        | -2.0558          | 0.7656             | 0.8245          | -457.3720      | -373.2860    | 0.7604          | 0.5012        |
| 0.5534        | 0.94  | 1800 | 0.5325          | -1.2309        | -2.0558          | 0.7656             | 0.8249          | -457.3779      | -373.2437    | 0.7550          | 0.4957        |
| 0.5539        | 0.99  | 1900 | 0.5325          | -1.2325        | -2.0565          | 0.7656             | 0.8240          | -457.4398      | -373.4022    | 0.7596          | 0.5001        |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0