lesso14's picture
End of training
4ea8de5 verified
metadata
library_name: peft
license: mit
base_model: fxmarty/really-tiny-falcon-testing
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: 418e6629-dcd3-424e-b3db-50c11d0d7c6b
    results: []

Built with Axolotl

418e6629-dcd3-424e-b3db-50c11d0d7c6b

This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.9416

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000214
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 140
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 25000

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 11.0842
87.9206 0.0563 500 10.9867
87.8458 0.1127 1000 10.9740
87.8012 0.1690 1500 10.9673
87.7685 0.2254 2000 10.9628
87.7475 0.2817 2500 10.9602
87.7401 0.3381 3000 10.9575
87.7205 0.3944 3500 10.9554
87.6986 0.4508 4000 10.9532
87.6961 0.5071 4500 10.9514
87.677 0.5635 5000 10.9498
87.6867 0.6198 5500 10.9488
87.6773 0.6762 6000 10.9481
87.6696 0.7325 6500 10.9472
87.664 0.7889 7000 10.9466
87.6684 0.8452 7500 10.9463
87.6553 0.9015 8000 10.9458
87.6592 0.9579 8500 10.9454
87.6622 1.0143 9000 10.9448
87.6536 1.0706 9500 10.9444
87.6519 1.1270 10000 10.9442
87.6443 1.1833 10500 10.9439
87.6468 1.2397 11000 10.9438
87.6477 1.2960 11500 10.9434
87.6381 1.3524 12000 10.9433
87.6359 1.4087 12500 10.9430
87.6432 1.4650 13000 10.9428
87.6428 1.5214 13500 10.9428
87.634 1.5777 14000 10.9426
87.6254 1.6341 14500 10.9425
87.6294 1.6904 15000 10.9424
87.6307 1.7468 15500 10.9422
87.6393 1.8031 16000 10.9422
87.6266 1.8595 16500 10.9421
87.6327 1.9158 17000 10.9419
87.6298 1.9722 17500 10.9419
87.6353 2.0285 18000 10.9420
87.6329 2.0849 18500 10.9418
87.6332 2.1412 19000 10.9418
87.6301 2.1976 19500 10.9417
87.6308 2.2539 20000 10.9417
87.6302 2.3103 20500 10.9417
87.6378 2.3666 21000 10.9416
87.6317 2.4230 21500 10.9416
87.6272 2.4793 22000 10.9416
87.6308 2.5357 22500 10.9416
87.6299 2.5920 23000 10.9416
87.6303 2.6484 23500 10.9416
87.6262 2.7047 24000 10.9415
87.6281 2.7610 24500 10.9415
87.6344 2.8174 25000 10.9416

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1