See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e87224c8eb065bc2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e87224c8eb065bc2_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso14/418e6629-dcd3-424e-b3db-50c11d0d7c6b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000214
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 25000
micro_batch_size: 4
mlflow_experiment_name: /tmp/e87224c8eb065bc2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 140
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cd1f24c-cd92-4120-99af-dc7e5e1a2626
wandb_project: 14a
wandb_run: your_name
wandb_runid: 1cd1f24c-cd92-4120-99af-dc7e5e1a2626
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
418e6629-dcd3-424e-b3db-50c11d0d7c6b
This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.9416
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000214
- train_batch_size: 4
- eval_batch_size: 4
- seed: 140
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 25000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 11.0842 |
87.9206 | 0.0563 | 500 | 10.9867 |
87.8458 | 0.1127 | 1000 | 10.9740 |
87.8012 | 0.1690 | 1500 | 10.9673 |
87.7685 | 0.2254 | 2000 | 10.9628 |
87.7475 | 0.2817 | 2500 | 10.9602 |
87.7401 | 0.3381 | 3000 | 10.9575 |
87.7205 | 0.3944 | 3500 | 10.9554 |
87.6986 | 0.4508 | 4000 | 10.9532 |
87.6961 | 0.5071 | 4500 | 10.9514 |
87.677 | 0.5635 | 5000 | 10.9498 |
87.6867 | 0.6198 | 5500 | 10.9488 |
87.6773 | 0.6762 | 6000 | 10.9481 |
87.6696 | 0.7325 | 6500 | 10.9472 |
87.664 | 0.7889 | 7000 | 10.9466 |
87.6684 | 0.8452 | 7500 | 10.9463 |
87.6553 | 0.9015 | 8000 | 10.9458 |
87.6592 | 0.9579 | 8500 | 10.9454 |
87.6622 | 1.0143 | 9000 | 10.9448 |
87.6536 | 1.0706 | 9500 | 10.9444 |
87.6519 | 1.1270 | 10000 | 10.9442 |
87.6443 | 1.1833 | 10500 | 10.9439 |
87.6468 | 1.2397 | 11000 | 10.9438 |
87.6477 | 1.2960 | 11500 | 10.9434 |
87.6381 | 1.3524 | 12000 | 10.9433 |
87.6359 | 1.4087 | 12500 | 10.9430 |
87.6432 | 1.4650 | 13000 | 10.9428 |
87.6428 | 1.5214 | 13500 | 10.9428 |
87.634 | 1.5777 | 14000 | 10.9426 |
87.6254 | 1.6341 | 14500 | 10.9425 |
87.6294 | 1.6904 | 15000 | 10.9424 |
87.6307 | 1.7468 | 15500 | 10.9422 |
87.6393 | 1.8031 | 16000 | 10.9422 |
87.6266 | 1.8595 | 16500 | 10.9421 |
87.6327 | 1.9158 | 17000 | 10.9419 |
87.6298 | 1.9722 | 17500 | 10.9419 |
87.6353 | 2.0285 | 18000 | 10.9420 |
87.6329 | 2.0849 | 18500 | 10.9418 |
87.6332 | 2.1412 | 19000 | 10.9418 |
87.6301 | 2.1976 | 19500 | 10.9417 |
87.6308 | 2.2539 | 20000 | 10.9417 |
87.6302 | 2.3103 | 20500 | 10.9417 |
87.6378 | 2.3666 | 21000 | 10.9416 |
87.6317 | 2.4230 | 21500 | 10.9416 |
87.6272 | 2.4793 | 22000 | 10.9416 |
87.6308 | 2.5357 | 22500 | 10.9416 |
87.6299 | 2.5920 | 23000 | 10.9416 |
87.6303 | 2.6484 | 23500 | 10.9416 |
87.6262 | 2.7047 | 24000 | 10.9415 |
87.6281 | 2.7610 | 24500 | 10.9415 |
87.6344 | 2.8174 | 25000 | 10.9416 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso14/418e6629-dcd3-424e-b3db-50c11d0d7c6b
Base model
fxmarty/really-tiny-falcon-testing