Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e87224c8eb065bc2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e87224c8eb065bc2_train_data.json
  type:
    field_input: intent
    field_instruction: instruction
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso14/418e6629-dcd3-424e-b3db-50c11d0d7c6b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000214
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 25000
micro_batch_size: 4
mlflow_experiment_name: /tmp/e87224c8eb065bc2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 140
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cd1f24c-cd92-4120-99af-dc7e5e1a2626
wandb_project: 14a
wandb_run: your_name
wandb_runid: 1cd1f24c-cd92-4120-99af-dc7e5e1a2626
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

418e6629-dcd3-424e-b3db-50c11d0d7c6b

This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.9416

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000214
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 140
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 25000

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 11.0842
87.9206 0.0563 500 10.9867
87.8458 0.1127 1000 10.9740
87.8012 0.1690 1500 10.9673
87.7685 0.2254 2000 10.9628
87.7475 0.2817 2500 10.9602
87.7401 0.3381 3000 10.9575
87.7205 0.3944 3500 10.9554
87.6986 0.4508 4000 10.9532
87.6961 0.5071 4500 10.9514
87.677 0.5635 5000 10.9498
87.6867 0.6198 5500 10.9488
87.6773 0.6762 6000 10.9481
87.6696 0.7325 6500 10.9472
87.664 0.7889 7000 10.9466
87.6684 0.8452 7500 10.9463
87.6553 0.9015 8000 10.9458
87.6592 0.9579 8500 10.9454
87.6622 1.0143 9000 10.9448
87.6536 1.0706 9500 10.9444
87.6519 1.1270 10000 10.9442
87.6443 1.1833 10500 10.9439
87.6468 1.2397 11000 10.9438
87.6477 1.2960 11500 10.9434
87.6381 1.3524 12000 10.9433
87.6359 1.4087 12500 10.9430
87.6432 1.4650 13000 10.9428
87.6428 1.5214 13500 10.9428
87.634 1.5777 14000 10.9426
87.6254 1.6341 14500 10.9425
87.6294 1.6904 15000 10.9424
87.6307 1.7468 15500 10.9422
87.6393 1.8031 16000 10.9422
87.6266 1.8595 16500 10.9421
87.6327 1.9158 17000 10.9419
87.6298 1.9722 17500 10.9419
87.6353 2.0285 18000 10.9420
87.6329 2.0849 18500 10.9418
87.6332 2.1412 19000 10.9418
87.6301 2.1976 19500 10.9417
87.6308 2.2539 20000 10.9417
87.6302 2.3103 20500 10.9417
87.6378 2.3666 21000 10.9416
87.6317 2.4230 21500 10.9416
87.6272 2.4793 22000 10.9416
87.6308 2.5357 22500 10.9416
87.6299 2.5920 23000 10.9416
87.6303 2.6484 23500 10.9416
87.6262 2.7047 24000 10.9415
87.6281 2.7610 24500 10.9415
87.6344 2.8174 25000 10.9416

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso14/418e6629-dcd3-424e-b3db-50c11d0d7c6b

Adapter
(258)
this model