layoutlm-funsd / README.md
leom21's picture
Training in progress, epoch 1
04439db verified
|
raw
history blame
9.34 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6859
  • Answer: {'precision': 0.7175572519083969, 'recall': 0.8133498145859085, 'f1': 0.7624565469293164, 'number': 809}
  • Header: {'precision': 0.29411764705882354, 'recall': 0.33613445378151263, 'f1': 0.3137254901960785, 'number': 119}
  • Question: {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065}
  • Overall Precision: 0.7197
  • Overall Recall: 0.7898
  • Overall F1: 0.7531
  • Overall Accuracy: 0.8101

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8268 1.0 10 1.5857 {'precision': 0.015523932729624839, 'recall': 0.014833127317676144, 'f1': 0.015170670037926676, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.17011834319526628, 'recall': 0.107981220657277, 'f1': 0.1321079839172889, 'number': 1065} 0.0876 0.0637 0.0738 0.3586
1.4514 2.0 20 1.2482 {'precision': 0.28865979381443296, 'recall': 0.311495673671199, 'f1': 0.29964328180737215, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.38357142857142856, 'recall': 0.504225352112676, 'f1': 0.43569979716024343, 'number': 1065} 0.3471 0.3959 0.3699 0.5859
1.1188 3.0 30 0.9477 {'precision': 0.5157232704402516, 'recall': 0.6081582200247219, 'f1': 0.5581395348837209, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5390879478827362, 'recall': 0.6215962441314554, 'f1': 0.5774095071958134, 'number': 1065} 0.5215 0.5790 0.5487 0.7076
0.8437 4.0 40 0.7798 {'precision': 0.5986124876114965, 'recall': 0.7466007416563659, 'f1': 0.6644664466446645, 'number': 809} {'precision': 0.1875, 'recall': 0.07563025210084033, 'f1': 0.10778443113772454, 'number': 119} {'precision': 0.6486718080548415, 'recall': 0.7107981220657277, 'f1': 0.6783154121863798, 'number': 1065} 0.6160 0.6874 0.6498 0.7580
0.6804 5.0 50 0.7073 {'precision': 0.6413502109704642, 'recall': 0.7515451174289246, 'f1': 0.6920887877063175, 'number': 809} {'precision': 0.3, 'recall': 0.17647058823529413, 'f1': 0.22222222222222224, 'number': 119} {'precision': 0.6712662337662337, 'recall': 0.7765258215962442, 'f1': 0.7200696560731389, 'number': 1065} 0.6471 0.7306 0.6863 0.7850
0.5726 6.0 60 0.6805 {'precision': 0.643141153081511, 'recall': 0.799752781211372, 'f1': 0.7129476584022039, 'number': 809} {'precision': 0.3142857142857143, 'recall': 0.18487394957983194, 'f1': 0.23280423280423282, 'number': 119} {'precision': 0.709372312983663, 'recall': 0.7746478873239436, 'f1': 0.7405745062836624, 'number': 1065} 0.6673 0.7496 0.7060 0.7854
0.5005 7.0 70 0.6536 {'precision': 0.6701680672268907, 'recall': 0.788627935723115, 'f1': 0.7245883021010789, 'number': 809} {'precision': 0.27450980392156865, 'recall': 0.23529411764705882, 'f1': 0.2533936651583711, 'number': 119} {'precision': 0.743103448275862, 'recall': 0.8093896713615023, 'f1': 0.7748314606741572, 'number': 1065} 0.6902 0.7667 0.7264 0.7982
0.444 8.0 80 0.6526 {'precision': 0.6802935010482181, 'recall': 0.8022249690976514, 'f1': 0.7362450368689732, 'number': 809} {'precision': 0.26956521739130435, 'recall': 0.2605042016806723, 'f1': 0.264957264957265, 'number': 119} {'precision': 0.7400690846286702, 'recall': 0.8046948356807512, 'f1': 0.7710301394511921, 'number': 1065} 0.6902 0.7712 0.7284 0.8022
0.3904 9.0 90 0.6549 {'precision': 0.6905781584582441, 'recall': 0.7972805933250927, 'f1': 0.7401032702237521, 'number': 809} {'precision': 0.26666666666666666, 'recall': 0.2689075630252101, 'f1': 0.26778242677824265, 'number': 119} {'precision': 0.7554019014693172, 'recall': 0.8206572769953052, 'f1': 0.7866786678667866, 'number': 1065} 0.7015 0.7782 0.7379 0.8073
0.3778 10.0 100 0.6593 {'precision': 0.6996805111821086, 'recall': 0.8121137206427689, 'f1': 0.7517162471395881, 'number': 809} {'precision': 0.3018867924528302, 'recall': 0.2689075630252101, 'f1': 0.28444444444444444, 'number': 119} {'precision': 0.7707231040564374, 'recall': 0.8206572769953052, 'f1': 0.7949067758071852, 'number': 1065} 0.7173 0.7842 0.7493 0.8096
0.3205 11.0 110 0.6673 {'precision': 0.7185104052573932, 'recall': 0.8108776266996292, 'f1': 0.761904761904762, 'number': 809} {'precision': 0.26277372262773724, 'recall': 0.3025210084033613, 'f1': 0.28125000000000006, 'number': 119} {'precision': 0.7557643040136636, 'recall': 0.8309859154929577, 'f1': 0.7915921288014313, 'number': 1065} 0.7100 0.7913 0.7485 0.8077
0.3107 12.0 120 0.6723 {'precision': 0.7185104052573932, 'recall': 0.8108776266996292, 'f1': 0.761904761904762, 'number': 809} {'precision': 0.2803030303030303, 'recall': 0.31092436974789917, 'f1': 0.29482071713147406, 'number': 119} {'precision': 0.7740213523131673, 'recall': 0.8169014084507042, 'f1': 0.7948835084513477, 'number': 1065} 0.7206 0.7842 0.7511 0.8102
0.2906 13.0 130 0.6774 {'precision': 0.7175324675324676, 'recall': 0.8195302843016069, 'f1': 0.7651471436814773, 'number': 809} {'precision': 0.2824427480916031, 'recall': 0.31092436974789917, 'f1': 0.29600000000000004, 'number': 119} {'precision': 0.7678883071553229, 'recall': 0.8262910798122066, 'f1': 0.7960199004975125, 'number': 1065} 0.7179 0.7928 0.7535 0.8111
0.2684 14.0 140 0.6829 {'precision': 0.716304347826087, 'recall': 0.8145859085290482, 'f1': 0.7622903412377097, 'number': 809} {'precision': 0.2900763358778626, 'recall': 0.31932773109243695, 'f1': 0.304, 'number': 119} {'precision': 0.7742504409171076, 'recall': 0.8244131455399061, 'f1': 0.7985447930877672, 'number': 1065} 0.7208 0.7903 0.7539 0.8115
0.2659 15.0 150 0.6859 {'precision': 0.7175572519083969, 'recall': 0.8133498145859085, 'f1': 0.7624565469293164, 'number': 809} {'precision': 0.29411764705882354, 'recall': 0.33613445378151263, 'f1': 0.3137254901960785, 'number': 119} {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065} 0.7197 0.7898 0.7531 0.8101

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1