leom21 commited on
Commit
04439db
·
verified ·
1 Parent(s): 2065eca

Training in progress, epoch 1

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6859
21
+ - Answer: {'precision': 0.7175572519083969, 'recall': 0.8133498145859085, 'f1': 0.7624565469293164, 'number': 809}
22
+ - Header: {'precision': 0.29411764705882354, 'recall': 0.33613445378151263, 'f1': 0.3137254901960785, 'number': 119}
23
+ - Question: {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065}
24
+ - Overall Precision: 0.7197
25
+ - Overall Recall: 0.7898
26
+ - Overall F1: 0.7531
27
+ - Overall Accuracy: 0.8101
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8268 | 1.0 | 10 | 1.5857 | {'precision': 0.015523932729624839, 'recall': 0.014833127317676144, 'f1': 0.015170670037926676, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.17011834319526628, 'recall': 0.107981220657277, 'f1': 0.1321079839172889, 'number': 1065} | 0.0876 | 0.0637 | 0.0738 | 0.3586 |
60
+ | 1.4514 | 2.0 | 20 | 1.2482 | {'precision': 0.28865979381443296, 'recall': 0.311495673671199, 'f1': 0.29964328180737215, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.38357142857142856, 'recall': 0.504225352112676, 'f1': 0.43569979716024343, 'number': 1065} | 0.3471 | 0.3959 | 0.3699 | 0.5859 |
61
+ | 1.1188 | 3.0 | 30 | 0.9477 | {'precision': 0.5157232704402516, 'recall': 0.6081582200247219, 'f1': 0.5581395348837209, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5390879478827362, 'recall': 0.6215962441314554, 'f1': 0.5774095071958134, 'number': 1065} | 0.5215 | 0.5790 | 0.5487 | 0.7076 |
62
+ | 0.8437 | 4.0 | 40 | 0.7798 | {'precision': 0.5986124876114965, 'recall': 0.7466007416563659, 'f1': 0.6644664466446645, 'number': 809} | {'precision': 0.1875, 'recall': 0.07563025210084033, 'f1': 0.10778443113772454, 'number': 119} | {'precision': 0.6486718080548415, 'recall': 0.7107981220657277, 'f1': 0.6783154121863798, 'number': 1065} | 0.6160 | 0.6874 | 0.6498 | 0.7580 |
63
+ | 0.6804 | 5.0 | 50 | 0.7073 | {'precision': 0.6413502109704642, 'recall': 0.7515451174289246, 'f1': 0.6920887877063175, 'number': 809} | {'precision': 0.3, 'recall': 0.17647058823529413, 'f1': 0.22222222222222224, 'number': 119} | {'precision': 0.6712662337662337, 'recall': 0.7765258215962442, 'f1': 0.7200696560731389, 'number': 1065} | 0.6471 | 0.7306 | 0.6863 | 0.7850 |
64
+ | 0.5726 | 6.0 | 60 | 0.6805 | {'precision': 0.643141153081511, 'recall': 0.799752781211372, 'f1': 0.7129476584022039, 'number': 809} | {'precision': 0.3142857142857143, 'recall': 0.18487394957983194, 'f1': 0.23280423280423282, 'number': 119} | {'precision': 0.709372312983663, 'recall': 0.7746478873239436, 'f1': 0.7405745062836624, 'number': 1065} | 0.6673 | 0.7496 | 0.7060 | 0.7854 |
65
+ | 0.5005 | 7.0 | 70 | 0.6536 | {'precision': 0.6701680672268907, 'recall': 0.788627935723115, 'f1': 0.7245883021010789, 'number': 809} | {'precision': 0.27450980392156865, 'recall': 0.23529411764705882, 'f1': 0.2533936651583711, 'number': 119} | {'precision': 0.743103448275862, 'recall': 0.8093896713615023, 'f1': 0.7748314606741572, 'number': 1065} | 0.6902 | 0.7667 | 0.7264 | 0.7982 |
66
+ | 0.444 | 8.0 | 80 | 0.6526 | {'precision': 0.6802935010482181, 'recall': 0.8022249690976514, 'f1': 0.7362450368689732, 'number': 809} | {'precision': 0.26956521739130435, 'recall': 0.2605042016806723, 'f1': 0.264957264957265, 'number': 119} | {'precision': 0.7400690846286702, 'recall': 0.8046948356807512, 'f1': 0.7710301394511921, 'number': 1065} | 0.6902 | 0.7712 | 0.7284 | 0.8022 |
67
+ | 0.3904 | 9.0 | 90 | 0.6549 | {'precision': 0.6905781584582441, 'recall': 0.7972805933250927, 'f1': 0.7401032702237521, 'number': 809} | {'precision': 0.26666666666666666, 'recall': 0.2689075630252101, 'f1': 0.26778242677824265, 'number': 119} | {'precision': 0.7554019014693172, 'recall': 0.8206572769953052, 'f1': 0.7866786678667866, 'number': 1065} | 0.7015 | 0.7782 | 0.7379 | 0.8073 |
68
+ | 0.3778 | 10.0 | 100 | 0.6593 | {'precision': 0.6996805111821086, 'recall': 0.8121137206427689, 'f1': 0.7517162471395881, 'number': 809} | {'precision': 0.3018867924528302, 'recall': 0.2689075630252101, 'f1': 0.28444444444444444, 'number': 119} | {'precision': 0.7707231040564374, 'recall': 0.8206572769953052, 'f1': 0.7949067758071852, 'number': 1065} | 0.7173 | 0.7842 | 0.7493 | 0.8096 |
69
+ | 0.3205 | 11.0 | 110 | 0.6673 | {'precision': 0.7185104052573932, 'recall': 0.8108776266996292, 'f1': 0.761904761904762, 'number': 809} | {'precision': 0.26277372262773724, 'recall': 0.3025210084033613, 'f1': 0.28125000000000006, 'number': 119} | {'precision': 0.7557643040136636, 'recall': 0.8309859154929577, 'f1': 0.7915921288014313, 'number': 1065} | 0.7100 | 0.7913 | 0.7485 | 0.8077 |
70
+ | 0.3107 | 12.0 | 120 | 0.6723 | {'precision': 0.7185104052573932, 'recall': 0.8108776266996292, 'f1': 0.761904761904762, 'number': 809} | {'precision': 0.2803030303030303, 'recall': 0.31092436974789917, 'f1': 0.29482071713147406, 'number': 119} | {'precision': 0.7740213523131673, 'recall': 0.8169014084507042, 'f1': 0.7948835084513477, 'number': 1065} | 0.7206 | 0.7842 | 0.7511 | 0.8102 |
71
+ | 0.2906 | 13.0 | 130 | 0.6774 | {'precision': 0.7175324675324676, 'recall': 0.8195302843016069, 'f1': 0.7651471436814773, 'number': 809} | {'precision': 0.2824427480916031, 'recall': 0.31092436974789917, 'f1': 0.29600000000000004, 'number': 119} | {'precision': 0.7678883071553229, 'recall': 0.8262910798122066, 'f1': 0.7960199004975125, 'number': 1065} | 0.7179 | 0.7928 | 0.7535 | 0.8111 |
72
+ | 0.2684 | 14.0 | 140 | 0.6829 | {'precision': 0.716304347826087, 'recall': 0.8145859085290482, 'f1': 0.7622903412377097, 'number': 809} | {'precision': 0.2900763358778626, 'recall': 0.31932773109243695, 'f1': 0.304, 'number': 119} | {'precision': 0.7742504409171076, 'recall': 0.8244131455399061, 'f1': 0.7985447930877672, 'number': 1065} | 0.7208 | 0.7903 | 0.7539 | 0.8115 |
73
+ | 0.2659 | 15.0 | 150 | 0.6859 | {'precision': 0.7175572519083969, 'recall': 0.8133498145859085, 'f1': 0.7624565469293164, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.33613445378151263, 'f1': 0.3137254901960785, 'number': 119} | {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065} | 0.7197 | 0.7898 | 0.7531 | 0.8101 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.40.1
79
+ - Pytorch 2.3.0+cu121
80
+ - Datasets 2.19.0
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1714564803.DESKTOP-3CFO1LV.1077.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c76e0ef6fc10d4db218315de54516f2ae716416d2c2a99516106d25fcfd16855
3
- size 12645
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4cd4d041b6d9ee7d4fd8632ba4d82f4012706d70153d510e1cc28ce67d82b38
3
+ size 15846
logs/events.out.tfevents.1714565161.DESKTOP-3CFO1LV.2689.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43675fc0236adfebe90d4bda91d13cafff6bd6c8b04fa60c712f6bc77ecfa56d
3
+ size 5625
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:411cb72d3c0e20e50f4de0dcb532eeda7507cbdadbd7166f99a88f70aa05f959
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6b379d719ff7fac644bb4674b9a0c89cafc513151bf79cb49985fda865d974d
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": false,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff