|
--- |
|
license: apache-2.0 |
|
base_model: t5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-base-finetuned-xsum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-finetuned-xsum |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7758 |
|
- Rouge1: 77.9048 |
|
- Rouge2: 52.4603 |
|
- Rougel: 78.6825 |
|
- Rougelsum: 78.3333 |
|
- Gen Len: 6.6 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 17 | 2.4750 | 49.2456 | 26.8694 | 48.0467 | 48.0189 | 15.2 | |
|
| No log | 2.0 | 34 | 1.5092 | 68.1774 | 45.2201 | 67.9806 | 68.0505 | 10.2 | |
|
| No log | 3.0 | 51 | 1.1905 | 73.8611 | 48.5079 | 74.3016 | 74.127 | 7.5 | |
|
| No log | 4.0 | 68 | 1.0329 | 74.1693 | 46.4048 | 74.7143 | 74.2566 | 7.0 | |
|
| No log | 5.0 | 85 | 0.9331 | 73.9841 | 45.8016 | 74.5159 | 74.1905 | 6.5333 | |
|
| No log | 6.0 | 102 | 0.8774 | 74.9841 | 45.8016 | 75.4048 | 75.2222 | 6.5333 | |
|
| No log | 7.0 | 119 | 0.8377 | 78.2487 | 51.3968 | 79.0212 | 78.6825 | 6.8333 | |
|
| No log | 8.0 | 136 | 0.8264 | 76.5714 | 50.1349 | 77.3651 | 77.0159 | 6.4667 | |
|
| No log | 9.0 | 153 | 0.8160 | 76.5714 | 50.1349 | 77.3651 | 77.0159 | 6.4333 | |
|
| No log | 10.0 | 170 | 0.7945 | 78.709 | 53.4127 | 79.4974 | 79.0132 | 6.6667 | |
|
| No log | 11.0 | 187 | 0.7846 | 78.709 | 53.4127 | 79.4974 | 79.0132 | 6.6667 | |
|
| No log | 12.0 | 204 | 0.7794 | 77.9048 | 52.4603 | 78.6825 | 78.3333 | 6.6 | |
|
| No log | 13.0 | 221 | 0.7783 | 77.9048 | 52.4603 | 78.6825 | 78.3333 | 6.6 | |
|
| No log | 14.0 | 238 | 0.7764 | 77.9048 | 52.4603 | 78.6825 | 78.3333 | 6.6 | |
|
| No log | 15.0 | 255 | 0.7758 | 77.9048 | 52.4603 | 78.6825 | 78.3333 | 6.6 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|