File size: 2,968 Bytes
b5c5c10 9959c9d b5c5c10 9959c9d b5c5c10 9959c9d b5c5c10 9959c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-finetuned-xsum
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7758
- Rouge1: 77.9048
- Rouge2: 52.4603
- Rougel: 78.6825
- Rougelsum: 78.3333
- Gen Len: 6.6
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 17 | 2.4750 | 49.2456 | 26.8694 | 48.0467 | 48.0189 | 15.2 |
| No log | 2.0 | 34 | 1.5092 | 68.1774 | 45.2201 | 67.9806 | 68.0505 | 10.2 |
| No log | 3.0 | 51 | 1.1905 | 73.8611 | 48.5079 | 74.3016 | 74.127 | 7.5 |
| No log | 4.0 | 68 | 1.0329 | 74.1693 | 46.4048 | 74.7143 | 74.2566 | 7.0 |
| No log | 5.0 | 85 | 0.9331 | 73.9841 | 45.8016 | 74.5159 | 74.1905 | 6.5333 |
| No log | 6.0 | 102 | 0.8774 | 74.9841 | 45.8016 | 75.4048 | 75.2222 | 6.5333 |
| No log | 7.0 | 119 | 0.8377 | 78.2487 | 51.3968 | 79.0212 | 78.6825 | 6.8333 |
| No log | 8.0 | 136 | 0.8264 | 76.5714 | 50.1349 | 77.3651 | 77.0159 | 6.4667 |
| No log | 9.0 | 153 | 0.8160 | 76.5714 | 50.1349 | 77.3651 | 77.0159 | 6.4333 |
| No log | 10.0 | 170 | 0.7945 | 78.709 | 53.4127 | 79.4974 | 79.0132 | 6.6667 |
| No log | 11.0 | 187 | 0.7846 | 78.709 | 53.4127 | 79.4974 | 79.0132 | 6.6667 |
| No log | 12.0 | 204 | 0.7794 | 77.9048 | 52.4603 | 78.6825 | 78.3333 | 6.6 |
| No log | 13.0 | 221 | 0.7783 | 77.9048 | 52.4603 | 78.6825 | 78.3333 | 6.6 |
| No log | 14.0 | 238 | 0.7764 | 77.9048 | 52.4603 | 78.6825 | 78.3333 | 6.6 |
| No log | 15.0 | 255 | 0.7758 | 77.9048 | 52.4603 | 78.6825 | 78.3333 | 6.6 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|