metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
We expect ME&T’s capital expenditures in 2024 to be around $2.0 billion to
$2.5 billion.
sentences:
- What was the amount gained from the disposal of assets in 2022?
- What is the expected capital expenditure for ME&T in 2024?
- >-
What is the expected total cost HP will incur from its Fiscal 2023 Plan,
and how is it primarily divided?
- source_sentence: >-
Average invested capital is calculated as the sum of (i) the average of
our total assets, (ii) the average LIFO reserve and (iii) the average
accumulated depreciation and amortization; minus (i) the average taxes
receivable, (ii) the average trade accounts payable, (iii) the average
accrued salaries and wages and (iv) the average other current liabilities,
excluding accrued income taxes.
sentences:
- >-
What are the components and the effective tax rates for the year 2023 as
reported in the financial statements?
- How is average invested capital calculated for ROIC?
- >-
How did the interest income change in fiscal year 2023 compared to the
previous year?
- source_sentence: >-
Return on Invested Capital ('ROIC') as of May 31, 2023 was 31.5% compared
to 46.5% as of May 31, 2022.
sentences:
- >-
How is NIKE's return on invested capital (ROIC) calculated, and what was
its value as of May 31, 2023?
- >-
What role do medical directors play at outpatient dialysis centers, and
what are their general qualifications?
- What item number discusses legal proceedings in the report?
- source_sentence: >-
Net cash used in financing activities was $506.5 million in the year ended
December 31, 2022, and increased to $656.5 million in the year ended
December 31, 2023.
sentences:
- >-
How has the change in foreign exchange rates affected cash and cash
equivalents in 2023 and 2021?
- >-
What kind of financial documents are included in Part IV, Item 15(a)(1)
of the Annual Report on Form 10-K?
- >-
How did the net cash used in financing activities in 2023 compare to
2022?
- source_sentence: >-
Alternative Payments Providers: These providers, such as closed commerce
ecosystems, BNPL solutions and cryptocurrency platforms, often have a
primary focus of enabling payments through ecommerce and mobile channels;
however, they are expanding or may expand their offerings to the physical
point of sale. These companies may process payments using in-house account
transfers between parties, electronic funds transfer networks like the
ACH, global or local networks like Visa, or some combination of the
foregoing.
sentences:
- >-
What are some examples of alternative payments providers and how do they
compete with Visa?
- >-
How much did the company's currently payable U.S. taxes amount to in
2023?
- What considerations are involved in recording an uncertain tax position?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6885714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6885714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6885714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8044897381040067
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7690017006802718
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.772240177124622
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6971428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8342857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6971428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27809523809523806
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09071428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6971428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8342857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8044496489287004
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7712602040816322
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7750129601859859
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8257142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2752380952380953
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8257142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8034440275222344
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7690856009070293
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7724648546606009
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6742857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6742857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6742857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7881399973034273
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7522210884353742
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7560032496112399
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6385714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7671428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8242857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.87
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6385714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2557142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16485714285714284
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.087
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6385714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7671428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8242857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.87
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7528845651704559
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7154948979591831
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7205565552029373
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("kperkins411/bge-base-financial-matryoshka")
sentences = [
'Alternative Payments Providers: These providers, such as closed commerce ecosystems, BNPL solutions and cryptocurrency platforms, often have a primary focus of enabling payments through ecommerce and mobile channels; however, they are expanding or may expand their offerings to the physical point of sale. These companies may process payments using in-house account transfers between parties, electronic funds transfer networks like the ACH, global or local networks like Visa, or some combination of the foregoing.',
'What are some examples of alternative payments providers and how do they compete with Visa?',
"How much did the company's currently payable U.S. taxes amount to in 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6886 |
cosine_accuracy@3 |
0.8329 |
cosine_accuracy@5 |
0.8743 |
cosine_accuracy@10 |
0.9143 |
cosine_precision@1 |
0.6886 |
cosine_precision@3 |
0.2776 |
cosine_precision@5 |
0.1749 |
cosine_precision@10 |
0.0914 |
cosine_recall@1 |
0.6886 |
cosine_recall@3 |
0.8329 |
cosine_recall@5 |
0.8743 |
cosine_recall@10 |
0.9143 |
cosine_ndcg@10 |
0.8045 |
cosine_mrr@10 |
0.769 |
cosine_map@100 |
0.7722 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6971 |
cosine_accuracy@3 |
0.8343 |
cosine_accuracy@5 |
0.8743 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.6971 |
cosine_precision@3 |
0.2781 |
cosine_precision@5 |
0.1749 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.6971 |
cosine_recall@3 |
0.8343 |
cosine_recall@5 |
0.8743 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.8044 |
cosine_mrr@10 |
0.7713 |
cosine_map@100 |
0.775 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6914 |
cosine_accuracy@3 |
0.8257 |
cosine_accuracy@5 |
0.8714 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.6914 |
cosine_precision@3 |
0.2752 |
cosine_precision@5 |
0.1743 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.6914 |
cosine_recall@3 |
0.8257 |
cosine_recall@5 |
0.8714 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.8034 |
cosine_mrr@10 |
0.7691 |
cosine_map@100 |
0.7725 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6743 |
cosine_accuracy@3 |
0.81 |
cosine_accuracy@5 |
0.8543 |
cosine_accuracy@10 |
0.9 |
cosine_precision@1 |
0.6743 |
cosine_precision@3 |
0.27 |
cosine_precision@5 |
0.1709 |
cosine_precision@10 |
0.09 |
cosine_recall@1 |
0.6743 |
cosine_recall@3 |
0.81 |
cosine_recall@5 |
0.8543 |
cosine_recall@10 |
0.9 |
cosine_ndcg@10 |
0.7881 |
cosine_mrr@10 |
0.7522 |
cosine_map@100 |
0.756 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6386 |
cosine_accuracy@3 |
0.7671 |
cosine_accuracy@5 |
0.8243 |
cosine_accuracy@10 |
0.87 |
cosine_precision@1 |
0.6386 |
cosine_precision@3 |
0.2557 |
cosine_precision@5 |
0.1649 |
cosine_precision@10 |
0.087 |
cosine_recall@1 |
0.6386 |
cosine_recall@3 |
0.7671 |
cosine_recall@5 |
0.8243 |
cosine_recall@10 |
0.87 |
cosine_ndcg@10 |
0.7529 |
cosine_mrr@10 |
0.7155 |
cosine_map@100 |
0.7206 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 45.51 tokens
- max: 371 tokens
|
- min: 10 tokens
- mean: 20.83 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Activities related to sales before 2023 experienced adjustments due to changes in estimates, impacting the rebates and chargebacks accounts, and led to an ending balance of $4,493 million for the year 2023. |
What adjustments were made to the rebates and chargebacks balances for previous years' sales and how did they affect the end of year balance in 2023? |
We’re focused on making hosting just as popular as traveling on Airbnb. We will continue to invest in growing the size and quality of our Host community. We plan to attract more Hosts globally by expanding use cases and supporting all different types of Hosts, including those who host occasionally. |
What is Airbnb's long-term corporate strategy regarding hosting? |
Due to protectionist measures in various regions, Nike has experienced increased product costs. The company responds by monitoring trends, engaging in processes to mitigate restrictions, and advocating for trade liberalization in trade agreements. |
What challenges related to trade protectionism has Nike faced, and what measures has the company taken in response? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.96 |
3 |
- |
0.7116 |
0.7341 |
0.7448 |
0.6550 |
0.7455 |
1.92 |
6 |
- |
0.7317 |
0.7520 |
0.7586 |
0.6975 |
0.7591 |
2.88 |
9 |
- |
0.7334 |
0.7553 |
0.7631 |
0.7039 |
0.7630 |
3.2 |
10 |
3.3636 |
- |
- |
- |
- |
- |
3.84 |
12 |
- |
0.7368 |
0.759 |
0.7634 |
0.7054 |
0.7638 |
0.96 |
3 |
- |
0.7415 |
0.7601 |
0.7672 |
0.7102 |
0.7661 |
1.92 |
6 |
- |
0.7486 |
0.7683 |
0.7720 |
0.7205 |
0.7718 |
2.88 |
9 |
- |
0.7556 |
0.7718 |
0.7750 |
0.7215 |
0.7717 |
3.2 |
10 |
1.66 |
- |
- |
- |
- |
- |
3.84 |
12 |
- |
0.756 |
0.7725 |
0.775 |
0.7206 |
0.7722 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}