---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: We expect ME&T’s capital expenditures in 2024 to be around $2.0
billion to $2.5 billion.
sentences:
- What was the amount gained from the disposal of assets in 2022?
- What is the expected capital expenditure for ME&T in 2024?
- What is the expected total cost HP will incur from its Fiscal 2023 Plan, and how
is it primarily divided?
- source_sentence: Average invested capital is calculated as the sum of (i) the average
of our total assets, (ii) the average LIFO reserve and (iii) the average accumulated
depreciation and amortization; minus (i) the average taxes receivable, (ii) the
average trade accounts payable, (iii) the average accrued salaries and wages and
(iv) the average other current liabilities, excluding accrued income taxes.
sentences:
- What are the components and the effective tax rates for the year 2023 as reported
in the financial statements?
- How is average invested capital calculated for ROIC?
- How did the interest income change in fiscal year 2023 compared to the previous
year?
- source_sentence: Return on Invested Capital ('ROIC') as of May 31, 2023 was 31.5%
compared to 46.5% as of May 31, 2022.
sentences:
- How is NIKE's return on invested capital (ROIC) calculated, and what was its value
as of May 31, 2023?
- What role do medical directors play at outpatient dialysis centers, and what are
their general qualifications?
- What item number discusses legal proceedings in the report?
- source_sentence: Net cash used in financing activities was $506.5 million in the
year ended December 31, 2022, and increased to $656.5 million in the year ended
December 31, 2023.
sentences:
- How has the change in foreign exchange rates affected cash and cash equivalents
in 2023 and 2021?
- What kind of financial documents are included in Part IV, Item 15(a)(1) of the
Annual Report on Form 10-K?
- How did the net cash used in financing activities in 2023 compare to 2022?
- source_sentence: 'Alternative Payments Providers: These providers, such as closed
commerce ecosystems, BNPL solutions and cryptocurrency platforms, often have a
primary focus of enabling payments through ecommerce and mobile channels; however,
they are expanding or may expand their offerings to the physical point of sale.
These companies may process payments using in-house account transfers between
parties, electronic funds transfer networks like the ACH, global or local networks
like Visa, or some combination of the foregoing.'
sentences:
- What are some examples of alternative payments providers and how do they compete
with Visa?
- How much did the company's currently payable U.S. taxes amount to in 2023?
- What considerations are involved in recording an uncertain tax position?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6885714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6885714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6885714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8044897381040067
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7690017006802718
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.772240177124622
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6971428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8342857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6971428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27809523809523806
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09071428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6971428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8342857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8044496489287004
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7712602040816322
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7750129601859859
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8257142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2752380952380953
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8257142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8034440275222344
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7690856009070293
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7724648546606009
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6742857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6742857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6742857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7881399973034273
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7522210884353742
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7560032496112399
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6385714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7671428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8242857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.87
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6385714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2557142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16485714285714284
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.087
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6385714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7671428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8242857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.87
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7528845651704559
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7154948979591831
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7205565552029373
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kperkins411/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Alternative Payments Providers: These providers, such as closed commerce ecosystems, BNPL solutions and cryptocurrency platforms, often have a primary focus of enabling payments through ecommerce and mobile channels; however, they are expanding or may expand their offerings to the physical point of sale. These companies may process payments using in-house account transfers between parties, electronic funds transfer networks like the ACH, global or local networks like Visa, or some combination of the foregoing.',
'What are some examples of alternative payments providers and how do they compete with Visa?',
"How much did the company's currently payable U.S. taxes amount to in 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6886 |
| cosine_accuracy@3 | 0.8329 |
| cosine_accuracy@5 | 0.8743 |
| cosine_accuracy@10 | 0.9143 |
| cosine_precision@1 | 0.6886 |
| cosine_precision@3 | 0.2776 |
| cosine_precision@5 | 0.1749 |
| cosine_precision@10 | 0.0914 |
| cosine_recall@1 | 0.6886 |
| cosine_recall@3 | 0.8329 |
| cosine_recall@5 | 0.8743 |
| cosine_recall@10 | 0.9143 |
| cosine_ndcg@10 | 0.8045 |
| cosine_mrr@10 | 0.769 |
| **cosine_map@100** | **0.7722** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.6971 |
| cosine_accuracy@3 | 0.8343 |
| cosine_accuracy@5 | 0.8743 |
| cosine_accuracy@10 | 0.9071 |
| cosine_precision@1 | 0.6971 |
| cosine_precision@3 | 0.2781 |
| cosine_precision@5 | 0.1749 |
| cosine_precision@10 | 0.0907 |
| cosine_recall@1 | 0.6971 |
| cosine_recall@3 | 0.8343 |
| cosine_recall@5 | 0.8743 |
| cosine_recall@10 | 0.9071 |
| cosine_ndcg@10 | 0.8044 |
| cosine_mrr@10 | 0.7713 |
| **cosine_map@100** | **0.775** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6914 |
| cosine_accuracy@3 | 0.8257 |
| cosine_accuracy@5 | 0.8714 |
| cosine_accuracy@10 | 0.91 |
| cosine_precision@1 | 0.6914 |
| cosine_precision@3 | 0.2752 |
| cosine_precision@5 | 0.1743 |
| cosine_precision@10 | 0.091 |
| cosine_recall@1 | 0.6914 |
| cosine_recall@3 | 0.8257 |
| cosine_recall@5 | 0.8714 |
| cosine_recall@10 | 0.91 |
| cosine_ndcg@10 | 0.8034 |
| cosine_mrr@10 | 0.7691 |
| **cosine_map@100** | **0.7725** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.6743 |
| cosine_accuracy@3 | 0.81 |
| cosine_accuracy@5 | 0.8543 |
| cosine_accuracy@10 | 0.9 |
| cosine_precision@1 | 0.6743 |
| cosine_precision@3 | 0.27 |
| cosine_precision@5 | 0.1709 |
| cosine_precision@10 | 0.09 |
| cosine_recall@1 | 0.6743 |
| cosine_recall@3 | 0.81 |
| cosine_recall@5 | 0.8543 |
| cosine_recall@10 | 0.9 |
| cosine_ndcg@10 | 0.7881 |
| cosine_mrr@10 | 0.7522 |
| **cosine_map@100** | **0.756** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6386 |
| cosine_accuracy@3 | 0.7671 |
| cosine_accuracy@5 | 0.8243 |
| cosine_accuracy@10 | 0.87 |
| cosine_precision@1 | 0.6386 |
| cosine_precision@3 | 0.2557 |
| cosine_precision@5 | 0.1649 |
| cosine_precision@10 | 0.087 |
| cosine_recall@1 | 0.6386 |
| cosine_recall@3 | 0.7671 |
| cosine_recall@5 | 0.8243 |
| cosine_recall@10 | 0.87 |
| cosine_ndcg@10 | 0.7529 |
| cosine_mrr@10 | 0.7155 |
| **cosine_map@100** | **0.7206** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details |
Activities related to sales before 2023 experienced adjustments due to changes in estimates, impacting the rebates and chargebacks accounts, and led to an ending balance of $4,493 million for the year 2023.
| What adjustments were made to the rebates and chargebacks balances for previous years' sales and how did they affect the end of year balance in 2023?
|
| We’re focused on making hosting just as popular as traveling on Airbnb. We will continue to invest in growing the size and quality of our Host community. We plan to attract more Hosts globally by expanding use cases and supporting all different types of Hosts, including those who host occasionally.
| What is Airbnb's long-term corporate strategy regarding hosting?
|
| Due to protectionist measures in various regions, Nike has experienced increased product costs. The company responds by monitoring trends, engaging in processes to mitigate restrictions, and advocating for trade liberalization in trade agreements.
| What challenges related to trade protectionism has Nike faced, and what measures has the company taken in response?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters