koesn's picture
Update README.md
36432b5 verified
|
raw
history blame
3.1 kB
metadata
library_name: transformers
license: llama2
datasets:
  - aqua_rat
  - microsoft/orca-math-word-problems-200k
  - m-a-p/CodeFeedback-Filtered-Instruction
  - anon8231489123/ShareGPT_Vicuna_unfiltered

Description

This repo contains GGUF format model files for Llama-3-Smaug-8B.

Files Provided

Name Quant Bits File Size Remark
llama-3-smaug-8b.Q2_K.gguf Q2_K 2 3.18 GB 2.96G, +3.5199 ppl @ Llama-3-8B
llama-3-smaug-8b.Q3_K.gguf Q3_K 3 4.02 GB 3.74G, +0.6569 ppl @ Llama-3-8B
llama-3-smaug-8b.Q4_0.gguf Q4_0 4 4.66 GB 4.34G, +0.4685 ppl @ Llama-3-8B
llama-3-smaug-8b.Q4_K.gguf Q4_K 4 4.92 GB 4.58G, +0.1754 ppl @ Llama-3-8B
llama-3-smaug-8b.Q5_K.gguf Q5_K 5 5.73 GB 5.33G, +0.0569 ppl @ Llama-3-8B
llama-3-smaug-8b.Q6_K.gguf Q6_K 6 6.60 GB 6.14G, +0.0217 ppl @ Llama-3-8B
llama-3-smaug-8b.Q8_0.gguf Q8_0 8 8.54 GB 7.96G, +0.0026 ppl @ Llama-3-8B

Parameters

path type architecture rope_theta sliding_win max_pos_embed
abacusai/Llama-3-Smaug-8B llama LlamaForCausalLM 500000.0 null 8192

Benchmarks

Original Model Card

Llama-3-Smaug-8B

Built with Meta Llama 3

image/png

This model was built using the Smaug recipe for improving performance on real world multi-turn conversations applied to meta-llama/Meta-Llama-3-8B-Instruct.

Model Description

Evaluation

MT-Bench

########## First turn ##########
                   score
model             turn
Llama-3-Smaug-8B 1   8.77500
Meta-Llama-3-8B-Instruct 1   8.31250
########## Second turn ##########
                   score
model             turn
Meta-Llama-3-8B-Instruct 2   7.8875 
Llama-3-Smaug-8B 2   7.8875
########## Average ##########
                 score
model
Llama-3-Smaug-8B  8.331250
Meta-Llama-3-8B-Instruct 8.10
Model First turn Second Turn Average
Llama-3-Smaug-8B 8.78 7.89 8.33
Llama-3-8B-Instruct 8.31 7.89 8.10

This version of Smaug uses new techniques and new data compared to Smaug-72B, and more information will be released later on. For now, see the previous Smaug paper: https://arxiv.org/abs/2402.13228.