File size: 3,098 Bytes
0e7eb74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc8b7d1
0e7eb74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: llama2
datasets:
- aqua_rat
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
- anon8231489123/ShareGPT_Vicuna_unfiltered
---

## Description
This repo contains GGUF format model files for Llama-3-Smaug-8B.

## Files Provided
|             Name           | Quant | Bits | File Size |              Remark              |
| -------------------------- | ----- | ---- | --------- | -------------------------------- |
| llama-3-smaug-8b.Q2_K.gguf | Q2_K  |  2   |  3.18 GB  | 2.96G, +3.5199 ppl @ Llama-3-8B  |
| llama-3-smaug-8b.Q3_K.gguf | Q3_K  |  3   |  4.02 GB  | 3.74G, +0.6569 ppl @ Llama-3-8B  |
| llama-3-smaug-8b.Q4_0.gguf | Q4_0  |  4   |  4.66 GB  | 4.34G, +0.4685 ppl @ Llama-3-8B  |
| llama-3-smaug-8b.Q4_K.gguf | Q4_K  |  4   |  4.92 GB  | 4.58G, +0.1754 ppl @ Llama-3-8B  |
| llama-3-smaug-8b.Q5_K.gguf | Q5_K  |  5   |  5.73 GB  | 5.33G, +0.0569 ppl @ Llama-3-8B  |
| llama-3-smaug-8b.Q6_K.gguf | Q6_K  |  6   |  6.60 GB  | 6.14G, +0.0217 ppl @ Llama-3-8B  |
| llama-3-smaug-8b.Q8_0.gguf | Q8_0  |  8   |  8.54 GB  | 7.96G, +0.0026 ppl @ Llama-3-8B  |

## Parameters
|             path          | type  |   architecture   | rope_theta | sliding_win | max_pos_embed |
| ------------------------- | ----- | ---------------- | ---------- | ----------- | ------------- |
| abacusai/Llama-3-Smaug-8B | llama | LlamaForCausalLM | 500000.0   | null        | 8192          |

## Benchmarks
![](https://i.ibb.co.com/fnmNt5G/Tangkapan-Layar-2024-09-06-pukul-09-03-28.png)

# Original Model Card

# Llama-3-Smaug-8B

### Built with Meta Llama 3


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f95cac5f9ba52bbcd7f/OrcJyTaUtD2HxJOPPwNva.png)

This model was built using the Smaug recipe  for improving performance on real world multi-turn conversations applied to 
[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).

### Model Description

- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://llama.meta.com/llama3/license/
- **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).


## Evaluation

### MT-Bench

```
########## First turn ##########
                   score
model             turn
Llama-3-Smaug-8B 1   8.77500
Meta-Llama-3-8B-Instruct 1   8.31250
########## Second turn ##########
                   score
model             turn
Meta-Llama-3-8B-Instruct 2   7.8875 
Llama-3-Smaug-8B 2   7.8875
########## Average ##########
                 score
model
Llama-3-Smaug-8B  8.331250
Meta-Llama-3-8B-Instruct 8.10
```

| Model | First turn | Second Turn | Average |
| :---- | ---------: | ----------: | ------: |
| Llama-3-Smaug-8B | 8.78 | 7.89 | 8.33 |
| Llama-3-8B-Instruct | 8.31 |  7.89 | 8.10 |

This version of Smaug uses new techniques and new data compared to [Smaug-72B](https://huggingface.co/abacusai/Smaug-72B-v0.1), and more information will be released later on. For now, see the previous Smaug paper: https://arxiv.org/abs/2402.13228.