bbc-to-ind-nmt-v8 / README.md
kepinsam's picture
End of training
3cbb830 verified
metadata
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
  - generated_from_trainer
datasets:
  - nusatranslation_mt
metrics:
  - sacrebleu
model-index:
  - name: bbc-to-ind-nmt-v8
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: nusatranslation_mt
          type: nusatranslation_mt
          config: nusatranslation_mt_btk_ind_source
          split: test
          args: nusatranslation_mt_btk_ind_source
        metrics:
          - name: Sacrebleu
            type: sacrebleu
            value: 37.8271

bbc-to-ind-nmt-v8

This model is a fine-tuned version of facebook/nllb-200-distilled-600M on the nusatranslation_mt dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1397
  • Sacrebleu: 37.8271
  • Gen Len: 37.329

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Sacrebleu Gen Len
5.9033 1.0 207 3.5144 25.8748 39.2155
2.4501 2.0 414 1.4664 31.5752 38.098
1.2896 3.0 621 1.1951 35.3334 37.154
1.0669 4.0 828 1.1503 36.5808 36.977
0.969 5.0 1035 1.1384 37.1725 37.2425
0.9036 6.0 1242 1.1310 37.6427 37.141
0.8572 7.0 1449 1.1333 37.6234 37.264
0.821 8.0 1656 1.1333 37.7638 37.222
0.7971 9.0 1863 1.1385 37.8469 37.378
0.7811 10.0 2070 1.1397 37.8271 37.329

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1