File size: 2,588 Bytes
3cbb830 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
datasets:
- nusatranslation_mt
metrics:
- sacrebleu
model-index:
- name: bbc-to-ind-nmt-v8
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: nusatranslation_mt
type: nusatranslation_mt
config: nusatranslation_mt_btk_ind_source
split: test
args: nusatranslation_mt_btk_ind_source
metrics:
- name: Sacrebleu
type: sacrebleu
value: 37.8271
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bbc-to-ind-nmt-v8
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the nusatranslation_mt dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1397
- Sacrebleu: 37.8271
- Gen Len: 37.329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 5.9033 | 1.0 | 207 | 3.5144 | 25.8748 | 39.2155 |
| 2.4501 | 2.0 | 414 | 1.4664 | 31.5752 | 38.098 |
| 1.2896 | 3.0 | 621 | 1.1951 | 35.3334 | 37.154 |
| 1.0669 | 4.0 | 828 | 1.1503 | 36.5808 | 36.977 |
| 0.969 | 5.0 | 1035 | 1.1384 | 37.1725 | 37.2425 |
| 0.9036 | 6.0 | 1242 | 1.1310 | 37.6427 | 37.141 |
| 0.8572 | 7.0 | 1449 | 1.1333 | 37.6234 | 37.264 |
| 0.821 | 8.0 | 1656 | 1.1333 | 37.7638 | 37.222 |
| 0.7971 | 9.0 | 1863 | 1.1385 | 37.8469 | 37.378 |
| 0.7811 | 10.0 | 2070 | 1.1397 | 37.8271 | 37.329 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1
|