kennethge123's picture
Model save
588d4fa verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - super_glue
metrics:
  - accuracy
model-index:
  - name: superglue_rte-bert-base-uncased
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: super_glue
          type: super_glue
          config: rte
          split: validation
          args: rte
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6739130434782609

superglue_rte-bert-base-uncased

This model is a fine-tuned version of bert-base-uncased on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5070
  • Accuracy: 0.6739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.704 1.0 623 0.6653 0.6159
0.6848 2.0 1246 0.7144 0.4203
0.7083 3.0 1869 0.6922 0.5797
0.7014 4.0 2492 0.7327 0.6232
0.6528 5.0 3115 0.6727 0.6522
0.6471 6.0 3738 0.8413 0.6159
0.5872 7.0 4361 0.8780 0.5507
0.5954 8.0 4984 0.7604 0.6377
0.5566 9.0 5607 0.8578 0.6812
0.5576 10.0 6230 2.0498 0.5362
0.4923 11.0 6853 1.4097 0.6304
0.5688 12.0 7476 1.4146 0.6667
0.433 13.0 8099 1.3354 0.6594
0.4259 14.0 8722 1.3271 0.6957
0.3869 15.0 9345 1.2881 0.6812
0.3641 16.0 9968 1.4485 0.6739
0.3292 17.0 10591 1.3445 0.6739
0.3734 18.0 11214 1.4917 0.6739
0.3227 19.0 11837 1.5281 0.6739
0.3133 20.0 12460 1.5070 0.6739

Framework versions

  • Transformers 4.32.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.15.0
  • Tokenizers 0.13.3