superglue_rte-bert-base-uncased

This model is a fine-tuned version of bert-base-uncased on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5070
  • Accuracy: 0.6739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.704 1.0 623 0.6653 0.6159
0.6848 2.0 1246 0.7144 0.4203
0.7083 3.0 1869 0.6922 0.5797
0.7014 4.0 2492 0.7327 0.6232
0.6528 5.0 3115 0.6727 0.6522
0.6471 6.0 3738 0.8413 0.6159
0.5872 7.0 4361 0.8780 0.5507
0.5954 8.0 4984 0.7604 0.6377
0.5566 9.0 5607 0.8578 0.6812
0.5576 10.0 6230 2.0498 0.5362
0.4923 11.0 6853 1.4097 0.6304
0.5688 12.0 7476 1.4146 0.6667
0.433 13.0 8099 1.3354 0.6594
0.4259 14.0 8722 1.3271 0.6957
0.3869 15.0 9345 1.2881 0.6812
0.3641 16.0 9968 1.4485 0.6739
0.3292 17.0 10591 1.3445 0.6739
0.3734 18.0 11214 1.4917 0.6739
0.3227 19.0 11837 1.5281 0.6739
0.3133 20.0 12460 1.5070 0.6739

Framework versions

  • Transformers 4.32.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.15.0
  • Tokenizers 0.13.3
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kennethge123/superglue_rte-bert-base-uncased

Finetuned
(2373)
this model
Finetunes
1 model

Dataset used to train kennethge123/superglue_rte-bert-base-uncased

Evaluation results