keithanpai's picture
update model card README.md
b12ea1d
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dit-base-finetuned-rvlcdip-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7315369261477046
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dit-base-finetuned-rvlcdip-finetuned-eurosat
This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7997
- Accuracy: 0.7315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9844 | 0.99 | 70 | 0.9493 | 0.6647 |
| 0.8775 | 1.99 | 140 | 0.8594 | 0.7016 |
| 0.8192 | 2.99 | 210 | 0.7997 | 0.7315 |
### Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1