keithanpai commited on
Commit
b12ea1d
1 Parent(s): 6602953

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - imagefolder
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: dit-base-finetuned-rvlcdip-finetuned-eurosat
10
+ results:
11
+ - task:
12
+ name: Image Classification
13
+ type: image-classification
14
+ dataset:
15
+ name: imagefolder
16
+ type: imagefolder
17
+ config: default
18
+ split: train
19
+ args: default
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.7315369261477046
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # dit-base-finetuned-rvlcdip-finetuned-eurosat
30
+
31
+ This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.7997
34
+ - Accuracy: 0.7315
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 5e-05
54
+ - train_batch_size: 32
55
+ - eval_batch_size: 32
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 4
58
+ - total_train_batch_size: 128
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 3
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.9844 | 0.99 | 70 | 0.9493 | 0.6647 |
69
+ | 0.8775 | 1.99 | 140 | 0.8594 | 0.7016 |
70
+ | 0.8192 | 2.99 | 210 | 0.7997 | 0.7315 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.21.0
76
+ - Pytorch 1.12.0+cu113
77
+ - Datasets 2.4.0
78
+ - Tokenizers 0.12.1