metadata
license: agpl-3.0
tags:
- object-detection
- computer-vision
- yolov10
- pypi
datasets:
- detection-datasets/coco
Model Description
YOLOv10: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Paper Repo: Implementation of paper - YOLOv10
Installation
pip install supervision git+https://github.com/THU-MIG/yolov10.git
Yolov10 Inference
from ultralytics import YOLOv10
import supervision as sv
import cv2
def attempt_download_from_hub(repo_id, hf_token=None):
# https://github.com/fcakyon/yolov5-pip/blob/main/yolov5/utils/downloads.py
from huggingface_hub import hf_hub_download, list_repo_files
from huggingface_hub.utils._errors import RepositoryNotFoundError
from huggingface_hub.utils._validators import HFValidationError
try:
repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token)
model_file = [f for f in repo_files if f.endswith('.pt')][0]
file = hf_hub_download(
repo_id=repo_id,
filename=model_file,
repo_type='model',
token=hf_token,
)
return file
except (RepositoryNotFoundError, HFValidationError):
return None
MODEL_PATH = attempt_download_from_hub("kadirnar/yolov10x", hf_token="hf_token")
IMAGE_PATH = 'dog.jpeg'
model = YOLOv10(MODEL_PATH)
image = cv2.imread(IMAGE_PATH)
results = model(source=image, conf=0.25, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
box_annotator = sv.BoxAnnotator()
category_dict = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(
image.copy(), detections=detections, labels=labels
)
cv2.imwrite('annotated_dog.jpeg', annotated_image)
BibTeX Entry and Citation Info
@misc{wang2024yolov10,
title={YOLOv10: Real-Time End-to-End Object Detection},
author={Ao Wang and Hui Chen and Lihao Liu and Kai Chen and Zijia Lin and Jungong Han and Guiguang Ding},
year={2024},
eprint={2405.14458},
archivePrefix={arXiv},
primaryClass={cs.CV}
}