Object Detection
YOLOv10
computer-vision
pypi
File size: 3,550 Bytes
64fa8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aad997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fa8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

---
license: agpl-3.0
tags:
  - object-detection
  - computer-vision
  - yolov10
  - pypi
datasets:
  - detection-datasets/coco
---

### Model Description
[YOLOv10: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2405.14458v1)

[Paper Repo: Implementation of paper - YOLOv10](https://github.com/THU-MIG/yolov10)

### Installation
```
pip install supervision git+https://github.com/THU-MIG/yolov10.git
```

### Yolov10 Inference
```python
from ultralytics import YOLOv10
import supervision as sv
import cv2

def attempt_download_from_hub(repo_id, hf_token=None):
    # https://github.com/fcakyon/yolov5-pip/blob/main/yolov5/utils/downloads.py
    from huggingface_hub import hf_hub_download, list_repo_files
    from huggingface_hub.utils._errors import RepositoryNotFoundError
    from huggingface_hub.utils._validators import HFValidationError
    try:
        repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token)
        model_file = [f for f in repo_files if f.endswith('.pt')][0]
        file = hf_hub_download(
            repo_id=repo_id,
            filename=model_file,
            repo_type='model',
            token=hf_token,
        )
        return file
    except (RepositoryNotFoundError, HFValidationError):
        return None
    

MODEL_PATH = attempt_download_from_hub("kadirnar/yolov10x", hf_token="hf_token")
IMAGE_PATH = 'dog.jpeg'

model = YOLOv10(MODEL_PATH)
image  = cv2.imread(IMAGE_PATH)
results = model(source=image, conf=0.25, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
box_annotator = sv.BoxAnnotator()

category_dict = {
    0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
    6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
    11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
    16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
    22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
    27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
    32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
    36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
    40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
    46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
    51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
    56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
    61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
    67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
    72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
    77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}

labels = [
    f"{category_dict[class_id]} {confidence:.2f}"
    for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(
    image.copy(), detections=detections, labels=labels
)

cv2.imwrite('annotated_dog.jpeg', annotated_image)
```

### BibTeX Entry and Citation Info
 ```
@misc{wang2024yolov10,
      title={YOLOv10: Real-Time End-to-End Object Detection}, 
      author={Ao Wang and Hui Chen and Lihao Liu and Kai Chen and Zijia Lin and Jungong Han and Guiguang Ding},
      year={2024},
      eprint={2405.14458},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```