|
--- |
|
license: apache-2.0 |
|
tags: |
|
- object-detection |
|
- computer-vision |
|
- object-classification |
|
language: |
|
- en |
|
--- |
|
|
|
### Model Description |
|
Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723 |
|
|
|
BEiT - https://arxiv.org/abs/2106.08254 |
|
|
|
Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 |
|
|
|
Bottleneck Transformers - https://arxiv.org/abs/2101.11605 |
|
|
|
CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239 |
|
|
|
CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399 |
|
|
|
CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803 |
|
|
|
ConvNeXt - https://arxiv.org/abs/2201.03545 |
|
|
|
ConvNeXt-V2 - http://arxiv.org/abs/2301.00808 |
|
|
|
ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697 |
|
|
|
CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929 |
|
|
|
DeiT - https://arxiv.org/abs/2012.12877 |
|
|
|
DeiT-III - https://arxiv.org/pdf/2204.07118.pdf |
|
|
|
DenseNet - https://arxiv.org/abs/1608.06993 |
|
|
|
DLA - https://arxiv.org/abs/1707.06484 |
|
|
|
DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629 |
|
|
|
EdgeNeXt - https://arxiv.org/abs/2206.10589 |
|
|
|
EfficientFormer - https://arxiv.org/abs/2206.01191 |
|
|
|
EfficientNet (MBConvNet Family) |
|
|
|
EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 |
|
|
|
EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 |
|
|
|
EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 |
|
|
|
EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html |
|
|
|
EfficientNet V2 - https://arxiv.org/abs/2104.00298 |
|
|
|
FBNet-C - https://arxiv.org/abs/1812.03443 |
|
|
|
MixNet - https://arxiv.org/abs/1907.09595 |
|
|
|
MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 |
|
|
|
MobileNet-V2 - https://arxiv.org/abs/1801.04381 |
|
|
|
Single-Path NAS - https://arxiv.org/abs/1904.02877 |
|
|
|
TinyNet - https://arxiv.org/abs/2010.14819 |
|
|
|
EVA - https://arxiv.org/abs/2211.07636 |
|
|
|
FlexiViT - https://arxiv.org/abs/2212.08013 |
|
|
|
GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959 |
|
|
|
GhostNet - https://arxiv.org/abs/1911.11907 |
|
|
|
gMLP - https://arxiv.org/abs/2105.08050 |
|
|
|
GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 |
|
|
|
Halo Nets - https://arxiv.org/abs/2103.12731 |
|
|
|
HRNet - https://arxiv.org/abs/1908.07919 |
|
|
|
Inception-V3 - https://arxiv.org/abs/1512.00567 |
|
|
|
Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261 |
|
|
|
Lambda Networks - https://arxiv.org/abs/2102.08602 |
|
|
|
LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136 |
|
|
|
MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697 |
|
|
|
MLP-Mixer - https://arxiv.org/abs/2105.01601 |
|
|
|
MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244 |
|
|
|
FBNet-V3 - https://arxiv.org/abs/2006.02049 |
|
|
|
HardCoRe-NAS - https://arxiv.org/abs/2102.11646 |
|
|
|
LCNet - https://arxiv.org/abs/2109.15099 |
|
|
|
MobileViT - https://arxiv.org/abs/2110.02178 |
|
|
|
MobileViT-V2 - https://arxiv.org/abs/2206.02680 |
|
|
|
MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526 |
|
|
|
NASNet-A - https://arxiv.org/abs/1707.07012 |
|
|
|
NesT - https://arxiv.org/abs/2105.12723 |
|
|
|
NFNet-F - https://arxiv.org/abs/2102.06171 |
|
|
|
NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692 |
|
|
|
PNasNet - https://arxiv.org/abs/1712.00559 |
|
|
|
PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418 |
|
|
|
Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302 |
|
|
|
PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797 |
|
|
|
RegNet - https://arxiv.org/abs/2003.13678 |
|
|
|
RegNetZ - https://arxiv.org/abs/2103.06877 |
|
|
|
RepVGG - https://arxiv.org/abs/2101.03697 |
|
|
|
ResMLP - https://arxiv.org/abs/2105.03404 |
|
|
|
ResNet/ResNeXt |
|
|
|
ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385 |
|
|
|
ResNeXt - https://arxiv.org/abs/1611.05431 |
|
|
|
'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187 |
|
|
|
Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932 |
|
|
|
Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546 |
|
|
|
ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4 |
|
|
|
Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507 |
|
|
|
ResNet-RS - https://arxiv.org/abs/2103.07579 |
|
|
|
Res2Net - https://arxiv.org/abs/1904.01169 |
|
|
|
ResNeSt - https://arxiv.org/abs/2004.08955 |
|
|
|
ReXNet - https://arxiv.org/abs/2007.00992 |
|
|
|
SelecSLS - https://arxiv.org/abs/1907.00837 |
|
|
|
Selective Kernel Networks - https://arxiv.org/abs/1903.06586 |
|
|
|
Sequencer2D - https://arxiv.org/abs/2205.01972 |
|
|
|
Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725 |
|
|
|
Swin Transformer - https://arxiv.org/abs/2103.14030 |
|
|
|
Swin Transformer V2 - https://arxiv.org/abs/2111.09883 |
|
|
|
Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112 |
|
|
|
TResNet - https://arxiv.org/abs/2003.13630 |
|
|
|
Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/abs/2104.13840 |
|
|
|
Visformer - https://arxiv.org/abs/2104.12533 |
|
|
|
Vision Transformer - https://arxiv.org/abs/2010.11929 |
|
|
|
VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112 |
|
|
|
VovNet V2 and V1 - https://arxiv.org/abs/1911.06667 |
|
|
|
Xception - https://arxiv.org/abs/1610.02357 |
|
|
|
Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611 |
|
|
|
Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611 |
|
|
|
XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681 |
|
|
|
### Installation |
|
``` |
|
pip install classifyhub |
|
``` |
|
|
|
### ClassifyHub(Timm) Usage |
|
```python |
|
from classifyhub import Predictor |
|
|
|
model = ClassifyPredictor("resnet18") |
|
model.predict("data/plane.jpg") |
|
``` |