File size: 5,611 Bytes
c784d72 9d72ee4 c784d72 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 10722d9 9d72ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
license: apache-2.0
tags:
- object-detection
- computer-vision
- object-classification
language:
- en
---
### Model Description
Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
BEiT - https://arxiv.org/abs/2106.08254
Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
Bottleneck Transformers - https://arxiv.org/abs/2101.11605
CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
ConvNeXt - https://arxiv.org/abs/2201.03545
ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
DeiT - https://arxiv.org/abs/2012.12877
DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
DenseNet - https://arxiv.org/abs/1608.06993
DLA - https://arxiv.org/abs/1707.06484
DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
EdgeNeXt - https://arxiv.org/abs/2206.10589
EfficientFormer - https://arxiv.org/abs/2206.01191
EfficientNet (MBConvNet Family)
EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
EfficientNet V2 - https://arxiv.org/abs/2104.00298
FBNet-C - https://arxiv.org/abs/1812.03443
MixNet - https://arxiv.org/abs/1907.09595
MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
MobileNet-V2 - https://arxiv.org/abs/1801.04381
Single-Path NAS - https://arxiv.org/abs/1904.02877
TinyNet - https://arxiv.org/abs/2010.14819
EVA - https://arxiv.org/abs/2211.07636
FlexiViT - https://arxiv.org/abs/2212.08013
GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
GhostNet - https://arxiv.org/abs/1911.11907
gMLP - https://arxiv.org/abs/2105.08050
GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
Halo Nets - https://arxiv.org/abs/2103.12731
HRNet - https://arxiv.org/abs/1908.07919
Inception-V3 - https://arxiv.org/abs/1512.00567
Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
Lambda Networks - https://arxiv.org/abs/2102.08602
LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
MLP-Mixer - https://arxiv.org/abs/2105.01601
MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
FBNet-V3 - https://arxiv.org/abs/2006.02049
HardCoRe-NAS - https://arxiv.org/abs/2102.11646
LCNet - https://arxiv.org/abs/2109.15099
MobileViT - https://arxiv.org/abs/2110.02178
MobileViT-V2 - https://arxiv.org/abs/2206.02680
MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
NASNet-A - https://arxiv.org/abs/1707.07012
NesT - https://arxiv.org/abs/2105.12723
NFNet-F - https://arxiv.org/abs/2102.06171
NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
PNasNet - https://arxiv.org/abs/1712.00559
PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
RegNet - https://arxiv.org/abs/2003.13678
RegNetZ - https://arxiv.org/abs/2103.06877
RepVGG - https://arxiv.org/abs/2101.03697
ResMLP - https://arxiv.org/abs/2105.03404
ResNet/ResNeXt
ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
ResNeXt - https://arxiv.org/abs/1611.05431
'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
ResNet-RS - https://arxiv.org/abs/2103.07579
Res2Net - https://arxiv.org/abs/1904.01169
ResNeSt - https://arxiv.org/abs/2004.08955
ReXNet - https://arxiv.org/abs/2007.00992
SelecSLS - https://arxiv.org/abs/1907.00837
Selective Kernel Networks - https://arxiv.org/abs/1903.06586
Sequencer2D - https://arxiv.org/abs/2205.01972
Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
Swin Transformer - https://arxiv.org/abs/2103.14030
Swin Transformer V2 - https://arxiv.org/abs/2111.09883
Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
TResNet - https://arxiv.org/abs/2003.13630
Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/abs/2104.13840
Visformer - https://arxiv.org/abs/2104.12533
Vision Transformer - https://arxiv.org/abs/2010.11929
VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
Xception - https://arxiv.org/abs/1610.02357
Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681
### Installation
```
pip install classifyhub
```
### ClassifyHub(Timm) Usage
```python
from classifyhub import Predictor
model = ClassifyPredictor("resnet18")
model.predict("data/plane.jpg")
``` |