File size: 5,611 Bytes
c784d72
 
9d72ee4
 
 
 
 
 
c784d72
9d72ee4
 
 
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
 
 
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
10722d9
9d72ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: apache-2.0
tags:
- object-detection
- computer-vision
- object-classification
language:
- en
---

### Model Description
Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723

BEiT - https://arxiv.org/abs/2106.08254

Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370

Bottleneck Transformers - https://arxiv.org/abs/2101.11605

CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239

CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399

CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803

ConvNeXt - https://arxiv.org/abs/2201.03545

ConvNeXt-V2 - http://arxiv.org/abs/2301.00808

ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697

CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929

DeiT - https://arxiv.org/abs/2012.12877

DeiT-III - https://arxiv.org/pdf/2204.07118.pdf

DenseNet - https://arxiv.org/abs/1608.06993

DLA - https://arxiv.org/abs/1707.06484

DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629

EdgeNeXt - https://arxiv.org/abs/2206.10589

EfficientFormer - https://arxiv.org/abs/2206.01191

EfficientNet (MBConvNet Family)

EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252

EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665

EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946

EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html

EfficientNet V2 - https://arxiv.org/abs/2104.00298

FBNet-C - https://arxiv.org/abs/1812.03443

MixNet - https://arxiv.org/abs/1907.09595

MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626

MobileNet-V2 - https://arxiv.org/abs/1801.04381

Single-Path NAS - https://arxiv.org/abs/1904.02877

TinyNet - https://arxiv.org/abs/2010.14819

EVA - https://arxiv.org/abs/2211.07636

FlexiViT - https://arxiv.org/abs/2212.08013

GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959

GhostNet - https://arxiv.org/abs/1911.11907

gMLP - https://arxiv.org/abs/2105.08050

GPU-Efficient Networks - https://arxiv.org/abs/2006.14090

Halo Nets - https://arxiv.org/abs/2103.12731

HRNet - https://arxiv.org/abs/1908.07919

Inception-V3 - https://arxiv.org/abs/1512.00567

Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261

Lambda Networks - https://arxiv.org/abs/2102.08602

LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136

MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697

MLP-Mixer - https://arxiv.org/abs/2105.01601

MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244

FBNet-V3 - https://arxiv.org/abs/2006.02049

HardCoRe-NAS - https://arxiv.org/abs/2102.11646

LCNet - https://arxiv.org/abs/2109.15099

MobileViT - https://arxiv.org/abs/2110.02178

MobileViT-V2 - https://arxiv.org/abs/2206.02680

MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526

NASNet-A - https://arxiv.org/abs/1707.07012

NesT - https://arxiv.org/abs/2105.12723

NFNet-F - https://arxiv.org/abs/2102.06171

NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692

PNasNet - https://arxiv.org/abs/1712.00559

PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418

Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302

PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797

RegNet - https://arxiv.org/abs/2003.13678

RegNetZ - https://arxiv.org/abs/2103.06877

RepVGG - https://arxiv.org/abs/2101.03697

ResMLP - https://arxiv.org/abs/2105.03404

ResNet/ResNeXt

ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385

ResNeXt - https://arxiv.org/abs/1611.05431

'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187

Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932

Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546

ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4

Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507

ResNet-RS - https://arxiv.org/abs/2103.07579

Res2Net - https://arxiv.org/abs/1904.01169

ResNeSt - https://arxiv.org/abs/2004.08955

ReXNet - https://arxiv.org/abs/2007.00992

SelecSLS - https://arxiv.org/abs/1907.00837

Selective Kernel Networks - https://arxiv.org/abs/1903.06586

Sequencer2D - https://arxiv.org/abs/2205.01972

Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725

Swin Transformer - https://arxiv.org/abs/2103.14030

Swin Transformer V2 - https://arxiv.org/abs/2111.09883

Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112

TResNet - https://arxiv.org/abs/2003.13630

Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/abs/2104.13840

Visformer - https://arxiv.org/abs/2104.12533

Vision Transformer - https://arxiv.org/abs/2010.11929

VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112

VovNet V2 and V1 - https://arxiv.org/abs/1911.06667

Xception - https://arxiv.org/abs/1610.02357

Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611

Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611

XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681

### Installation
```
pip install classifyhub
```

### ClassifyHub(Timm) Usage
```python
from classifyhub import Predictor

model = ClassifyPredictor("resnet18")
model.predict("data/plane.jpg")
```