Update README.md
Browse files
README.md
CHANGED
@@ -12,96 +12,187 @@ library_name: timm
|
|
12 |
|
13 |
### Model Description
|
14 |
Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
|
|
|
15 |
BEiT - https://arxiv.org/abs/2106.08254
|
|
|
16 |
Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
|
|
|
17 |
Bottleneck Transformers - https://arxiv.org/abs/2101.11605
|
|
|
18 |
CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
|
|
|
19 |
CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
|
|
|
20 |
CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
|
|
|
21 |
ConvNeXt - https://arxiv.org/abs/2201.03545
|
|
|
22 |
ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
|
|
|
23 |
ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
|
|
|
24 |
CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
|
|
|
25 |
DeiT - https://arxiv.org/abs/2012.12877
|
|
|
26 |
DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
|
|
|
27 |
DenseNet - https://arxiv.org/abs/1608.06993
|
|
|
28 |
DLA - https://arxiv.org/abs/1707.06484
|
|
|
29 |
DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
|
|
|
30 |
EdgeNeXt - https://arxiv.org/abs/2206.10589
|
|
|
31 |
EfficientFormer - https://arxiv.org/abs/2206.01191
|
|
|
32 |
EfficientNet (MBConvNet Family)
|
|
|
33 |
EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
|
|
|
34 |
EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
|
|
|
35 |
EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
|
|
|
36 |
EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
|
|
|
37 |
EfficientNet V2 - https://arxiv.org/abs/2104.00298
|
|
|
38 |
FBNet-C - https://arxiv.org/abs/1812.03443
|
|
|
39 |
MixNet - https://arxiv.org/abs/1907.09595
|
|
|
40 |
MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
|
|
|
41 |
MobileNet-V2 - https://arxiv.org/abs/1801.04381
|
|
|
42 |
Single-Path NAS - https://arxiv.org/abs/1904.02877
|
|
|
43 |
TinyNet - https://arxiv.org/abs/2010.14819
|
|
|
44 |
EVA - https://arxiv.org/abs/2211.07636
|
|
|
45 |
FlexiViT - https://arxiv.org/abs/2212.08013
|
|
|
46 |
GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
|
|
|
47 |
GhostNet - https://arxiv.org/abs/1911.11907
|
|
|
48 |
gMLP - https://arxiv.org/abs/2105.08050
|
|
|
49 |
GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
|
|
|
50 |
Halo Nets - https://arxiv.org/abs/2103.12731
|
|
|
51 |
HRNet - https://arxiv.org/abs/1908.07919
|
|
|
52 |
Inception-V3 - https://arxiv.org/abs/1512.00567
|
|
|
53 |
Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
|
|
|
54 |
Lambda Networks - https://arxiv.org/abs/2102.08602
|
|
|
55 |
LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
|
|
|
56 |
MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
|
|
|
57 |
MLP-Mixer - https://arxiv.org/abs/2105.01601
|
|
|
58 |
MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
|
|
|
59 |
FBNet-V3 - https://arxiv.org/abs/2006.02049
|
|
|
60 |
HardCoRe-NAS - https://arxiv.org/abs/2102.11646
|
|
|
61 |
LCNet - https://arxiv.org/abs/2109.15099
|
|
|
62 |
MobileViT - https://arxiv.org/abs/2110.02178
|
|
|
63 |
MobileViT-V2 - https://arxiv.org/abs/2206.02680
|
|
|
64 |
MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
|
|
|
65 |
NASNet-A - https://arxiv.org/abs/1707.07012
|
|
|
66 |
NesT - https://arxiv.org/abs/2105.12723
|
|
|
67 |
NFNet-F - https://arxiv.org/abs/2102.06171
|
|
|
68 |
NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
|
|
|
69 |
PNasNet - https://arxiv.org/abs/1712.00559
|
|
|
70 |
PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
|
|
|
71 |
Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
|
|
|
72 |
PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
|
|
|
73 |
RegNet - https://arxiv.org/abs/2003.13678
|
|
|
74 |
RegNetZ - https://arxiv.org/abs/2103.06877
|
|
|
75 |
RepVGG - https://arxiv.org/abs/2101.03697
|
|
|
76 |
ResMLP - https://arxiv.org/abs/2105.03404
|
|
|
77 |
ResNet/ResNeXt
|
|
|
78 |
ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
|
|
|
79 |
ResNeXt - https://arxiv.org/abs/1611.05431
|
|
|
80 |
'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
|
|
|
81 |
Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
|
|
|
82 |
Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
|
|
|
83 |
ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
|
|
|
84 |
Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
|
|
|
85 |
ResNet-RS - https://arxiv.org/abs/2103.07579
|
|
|
86 |
Res2Net - https://arxiv.org/abs/1904.01169
|
|
|
87 |
ResNeSt - https://arxiv.org/abs/2004.08955
|
|
|
88 |
ReXNet - https://arxiv.org/abs/2007.00992
|
|
|
89 |
SelecSLS - https://arxiv.org/abs/1907.00837
|
|
|
90 |
Selective Kernel Networks - https://arxiv.org/abs/1903.06586
|
|
|
91 |
Sequencer2D - https://arxiv.org/abs/2205.01972
|
|
|
92 |
Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
|
|
|
93 |
Swin Transformer - https://arxiv.org/abs/2103.14030
|
|
|
94 |
Swin Transformer V2 - https://arxiv.org/abs/2111.09883
|
|
|
95 |
Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
|
|
|
96 |
TResNet - https://arxiv.org/abs/2003.13630
|
97 |
-
|
|
|
|
|
98 |
Visformer - https://arxiv.org/abs/2104.12533
|
|
|
99 |
Vision Transformer - https://arxiv.org/abs/2010.11929
|
|
|
100 |
VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
|
|
|
101 |
VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
|
|
|
102 |
Xception - https://arxiv.org/abs/1610.02357
|
|
|
103 |
Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
|
|
|
104 |
Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
|
|
|
105 |
XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681
|
106 |
|
107 |
### Installation
|
|
|
12 |
|
13 |
### Model Description
|
14 |
Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
|
15 |
+
|
16 |
BEiT - https://arxiv.org/abs/2106.08254
|
17 |
+
|
18 |
Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
|
19 |
+
|
20 |
Bottleneck Transformers - https://arxiv.org/abs/2101.11605
|
21 |
+
|
22 |
CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
|
23 |
+
|
24 |
CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
|
25 |
+
|
26 |
CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
|
27 |
+
|
28 |
ConvNeXt - https://arxiv.org/abs/2201.03545
|
29 |
+
|
30 |
ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
|
31 |
+
|
32 |
ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
|
33 |
+
|
34 |
CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
|
35 |
+
|
36 |
DeiT - https://arxiv.org/abs/2012.12877
|
37 |
+
|
38 |
DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
|
39 |
+
|
40 |
DenseNet - https://arxiv.org/abs/1608.06993
|
41 |
+
|
42 |
DLA - https://arxiv.org/abs/1707.06484
|
43 |
+
|
44 |
DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
|
45 |
+
|
46 |
EdgeNeXt - https://arxiv.org/abs/2206.10589
|
47 |
+
|
48 |
EfficientFormer - https://arxiv.org/abs/2206.01191
|
49 |
+
|
50 |
EfficientNet (MBConvNet Family)
|
51 |
+
|
52 |
EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
|
53 |
+
|
54 |
EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
|
55 |
+
|
56 |
EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
|
57 |
+
|
58 |
EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
|
59 |
+
|
60 |
EfficientNet V2 - https://arxiv.org/abs/2104.00298
|
61 |
+
|
62 |
FBNet-C - https://arxiv.org/abs/1812.03443
|
63 |
+
|
64 |
MixNet - https://arxiv.org/abs/1907.09595
|
65 |
+
|
66 |
MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
|
67 |
+
|
68 |
MobileNet-V2 - https://arxiv.org/abs/1801.04381
|
69 |
+
|
70 |
Single-Path NAS - https://arxiv.org/abs/1904.02877
|
71 |
+
|
72 |
TinyNet - https://arxiv.org/abs/2010.14819
|
73 |
+
|
74 |
EVA - https://arxiv.org/abs/2211.07636
|
75 |
+
|
76 |
FlexiViT - https://arxiv.org/abs/2212.08013
|
77 |
+
|
78 |
GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
|
79 |
+
|
80 |
GhostNet - https://arxiv.org/abs/1911.11907
|
81 |
+
|
82 |
gMLP - https://arxiv.org/abs/2105.08050
|
83 |
+
|
84 |
GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
|
85 |
+
|
86 |
Halo Nets - https://arxiv.org/abs/2103.12731
|
87 |
+
|
88 |
HRNet - https://arxiv.org/abs/1908.07919
|
89 |
+
|
90 |
Inception-V3 - https://arxiv.org/abs/1512.00567
|
91 |
+
|
92 |
Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
|
93 |
+
|
94 |
Lambda Networks - https://arxiv.org/abs/2102.08602
|
95 |
+
|
96 |
LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
|
97 |
+
|
98 |
MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
|
99 |
+
|
100 |
MLP-Mixer - https://arxiv.org/abs/2105.01601
|
101 |
+
|
102 |
MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
|
103 |
+
|
104 |
FBNet-V3 - https://arxiv.org/abs/2006.02049
|
105 |
+
|
106 |
HardCoRe-NAS - https://arxiv.org/abs/2102.11646
|
107 |
+
|
108 |
LCNet - https://arxiv.org/abs/2109.15099
|
109 |
+
|
110 |
MobileViT - https://arxiv.org/abs/2110.02178
|
111 |
+
|
112 |
MobileViT-V2 - https://arxiv.org/abs/2206.02680
|
113 |
+
|
114 |
MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
|
115 |
+
|
116 |
NASNet-A - https://arxiv.org/abs/1707.07012
|
117 |
+
|
118 |
NesT - https://arxiv.org/abs/2105.12723
|
119 |
+
|
120 |
NFNet-F - https://arxiv.org/abs/2102.06171
|
121 |
+
|
122 |
NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
|
123 |
+
|
124 |
PNasNet - https://arxiv.org/abs/1712.00559
|
125 |
+
|
126 |
PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
|
127 |
+
|
128 |
Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
|
129 |
+
|
130 |
PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
|
131 |
+
|
132 |
RegNet - https://arxiv.org/abs/2003.13678
|
133 |
+
|
134 |
RegNetZ - https://arxiv.org/abs/2103.06877
|
135 |
+
|
136 |
RepVGG - https://arxiv.org/abs/2101.03697
|
137 |
+
|
138 |
ResMLP - https://arxiv.org/abs/2105.03404
|
139 |
+
|
140 |
ResNet/ResNeXt
|
141 |
+
|
142 |
ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
|
143 |
+
|
144 |
ResNeXt - https://arxiv.org/abs/1611.05431
|
145 |
+
|
146 |
'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
|
147 |
+
|
148 |
Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
|
149 |
+
|
150 |
Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
|
151 |
+
|
152 |
ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
|
153 |
+
|
154 |
Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
|
155 |
+
|
156 |
ResNet-RS - https://arxiv.org/abs/2103.07579
|
157 |
+
|
158 |
Res2Net - https://arxiv.org/abs/1904.01169
|
159 |
+
|
160 |
ResNeSt - https://arxiv.org/abs/2004.08955
|
161 |
+
|
162 |
ReXNet - https://arxiv.org/abs/2007.00992
|
163 |
+
|
164 |
SelecSLS - https://arxiv.org/abs/1907.00837
|
165 |
+
|
166 |
Selective Kernel Networks - https://arxiv.org/abs/1903.06586
|
167 |
+
|
168 |
Sequencer2D - https://arxiv.org/abs/2205.01972
|
169 |
+
|
170 |
Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
|
171 |
+
|
172 |
Swin Transformer - https://arxiv.org/abs/2103.14030
|
173 |
+
|
174 |
Swin Transformer V2 - https://arxiv.org/abs/2111.09883
|
175 |
+
|
176 |
Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
|
177 |
+
|
178 |
TResNet - https://arxiv.org/abs/2003.13630
|
179 |
+
|
180 |
+
Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/abs/2104.13840
|
181 |
+
|
182 |
Visformer - https://arxiv.org/abs/2104.12533
|
183 |
+
|
184 |
Vision Transformer - https://arxiv.org/abs/2010.11929
|
185 |
+
|
186 |
VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
|
187 |
+
|
188 |
VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
|
189 |
+
|
190 |
Xception - https://arxiv.org/abs/1610.02357
|
191 |
+
|
192 |
Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
|
193 |
+
|
194 |
Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
|
195 |
+
|
196 |
XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681
|
197 |
|
198 |
### Installation
|