kadirnar commited on
Commit
10722d9
1 Parent(s): 9d72ee4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -1
README.md CHANGED
@@ -12,96 +12,187 @@ library_name: timm
12
 
13
  ### Model Description
14
  Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
 
15
  BEiT - https://arxiv.org/abs/2106.08254
 
16
  Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
 
17
  Bottleneck Transformers - https://arxiv.org/abs/2101.11605
 
18
  CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
 
19
  CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
 
20
  CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
 
21
  ConvNeXt - https://arxiv.org/abs/2201.03545
 
22
  ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
 
23
  ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
 
24
  CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
 
25
  DeiT - https://arxiv.org/abs/2012.12877
 
26
  DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
 
27
  DenseNet - https://arxiv.org/abs/1608.06993
 
28
  DLA - https://arxiv.org/abs/1707.06484
 
29
  DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
 
30
  EdgeNeXt - https://arxiv.org/abs/2206.10589
 
31
  EfficientFormer - https://arxiv.org/abs/2206.01191
 
32
  EfficientNet (MBConvNet Family)
 
33
  EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
 
34
  EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
 
35
  EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
 
36
  EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
 
37
  EfficientNet V2 - https://arxiv.org/abs/2104.00298
 
38
  FBNet-C - https://arxiv.org/abs/1812.03443
 
39
  MixNet - https://arxiv.org/abs/1907.09595
 
40
  MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
 
41
  MobileNet-V2 - https://arxiv.org/abs/1801.04381
 
42
  Single-Path NAS - https://arxiv.org/abs/1904.02877
 
43
  TinyNet - https://arxiv.org/abs/2010.14819
 
44
  EVA - https://arxiv.org/abs/2211.07636
 
45
  FlexiViT - https://arxiv.org/abs/2212.08013
 
46
  GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
 
47
  GhostNet - https://arxiv.org/abs/1911.11907
 
48
  gMLP - https://arxiv.org/abs/2105.08050
 
49
  GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
 
50
  Halo Nets - https://arxiv.org/abs/2103.12731
 
51
  HRNet - https://arxiv.org/abs/1908.07919
 
52
  Inception-V3 - https://arxiv.org/abs/1512.00567
 
53
  Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
 
54
  Lambda Networks - https://arxiv.org/abs/2102.08602
 
55
  LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
 
56
  MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
 
57
  MLP-Mixer - https://arxiv.org/abs/2105.01601
 
58
  MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
 
59
  FBNet-V3 - https://arxiv.org/abs/2006.02049
 
60
  HardCoRe-NAS - https://arxiv.org/abs/2102.11646
 
61
  LCNet - https://arxiv.org/abs/2109.15099
 
62
  MobileViT - https://arxiv.org/abs/2110.02178
 
63
  MobileViT-V2 - https://arxiv.org/abs/2206.02680
 
64
  MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
 
65
  NASNet-A - https://arxiv.org/abs/1707.07012
 
66
  NesT - https://arxiv.org/abs/2105.12723
 
67
  NFNet-F - https://arxiv.org/abs/2102.06171
 
68
  NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
 
69
  PNasNet - https://arxiv.org/abs/1712.00559
 
70
  PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
 
71
  Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
 
72
  PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
 
73
  RegNet - https://arxiv.org/abs/2003.13678
 
74
  RegNetZ - https://arxiv.org/abs/2103.06877
 
75
  RepVGG - https://arxiv.org/abs/2101.03697
 
76
  ResMLP - https://arxiv.org/abs/2105.03404
 
77
  ResNet/ResNeXt
 
78
  ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
 
79
  ResNeXt - https://arxiv.org/abs/1611.05431
 
80
  'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
 
81
  Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
 
82
  Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
 
83
  ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
 
84
  Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
 
85
  ResNet-RS - https://arxiv.org/abs/2103.07579
 
86
  Res2Net - https://arxiv.org/abs/1904.01169
 
87
  ResNeSt - https://arxiv.org/abs/2004.08955
 
88
  ReXNet - https://arxiv.org/abs/2007.00992
 
89
  SelecSLS - https://arxiv.org/abs/1907.00837
 
90
  Selective Kernel Networks - https://arxiv.org/abs/1903.06586
 
91
  Sequencer2D - https://arxiv.org/abs/2205.01972
 
92
  Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
 
93
  Swin Transformer - https://arxiv.org/abs/2103.14030
 
94
  Swin Transformer V2 - https://arxiv.org/abs/2111.09883
 
95
  Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
 
96
  TResNet - https://arxiv.org/abs/2003.13630
97
- Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf
 
 
98
  Visformer - https://arxiv.org/abs/2104.12533
 
99
  Vision Transformer - https://arxiv.org/abs/2010.11929
 
100
  VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
 
101
  VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
 
102
  Xception - https://arxiv.org/abs/1610.02357
 
103
  Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
 
104
  Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
 
105
  XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681
106
 
107
  ### Installation
 
12
 
13
  ### Model Description
14
  Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
15
+
16
  BEiT - https://arxiv.org/abs/2106.08254
17
+
18
  Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
19
+
20
  Bottleneck Transformers - https://arxiv.org/abs/2101.11605
21
+
22
  CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
23
+
24
  CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
25
+
26
  CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
27
+
28
  ConvNeXt - https://arxiv.org/abs/2201.03545
29
+
30
  ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
31
+
32
  ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
33
+
34
  CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
35
+
36
  DeiT - https://arxiv.org/abs/2012.12877
37
+
38
  DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
39
+
40
  DenseNet - https://arxiv.org/abs/1608.06993
41
+
42
  DLA - https://arxiv.org/abs/1707.06484
43
+
44
  DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
45
+
46
  EdgeNeXt - https://arxiv.org/abs/2206.10589
47
+
48
  EfficientFormer - https://arxiv.org/abs/2206.01191
49
+
50
  EfficientNet (MBConvNet Family)
51
+
52
  EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
53
+
54
  EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
55
+
56
  EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
57
+
58
  EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
59
+
60
  EfficientNet V2 - https://arxiv.org/abs/2104.00298
61
+
62
  FBNet-C - https://arxiv.org/abs/1812.03443
63
+
64
  MixNet - https://arxiv.org/abs/1907.09595
65
+
66
  MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
67
+
68
  MobileNet-V2 - https://arxiv.org/abs/1801.04381
69
+
70
  Single-Path NAS - https://arxiv.org/abs/1904.02877
71
+
72
  TinyNet - https://arxiv.org/abs/2010.14819
73
+
74
  EVA - https://arxiv.org/abs/2211.07636
75
+
76
  FlexiViT - https://arxiv.org/abs/2212.08013
77
+
78
  GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
79
+
80
  GhostNet - https://arxiv.org/abs/1911.11907
81
+
82
  gMLP - https://arxiv.org/abs/2105.08050
83
+
84
  GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
85
+
86
  Halo Nets - https://arxiv.org/abs/2103.12731
87
+
88
  HRNet - https://arxiv.org/abs/1908.07919
89
+
90
  Inception-V3 - https://arxiv.org/abs/1512.00567
91
+
92
  Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
93
+
94
  Lambda Networks - https://arxiv.org/abs/2102.08602
95
+
96
  LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
97
+
98
  MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
99
+
100
  MLP-Mixer - https://arxiv.org/abs/2105.01601
101
+
102
  MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
103
+
104
  FBNet-V3 - https://arxiv.org/abs/2006.02049
105
+
106
  HardCoRe-NAS - https://arxiv.org/abs/2102.11646
107
+
108
  LCNet - https://arxiv.org/abs/2109.15099
109
+
110
  MobileViT - https://arxiv.org/abs/2110.02178
111
+
112
  MobileViT-V2 - https://arxiv.org/abs/2206.02680
113
+
114
  MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
115
+
116
  NASNet-A - https://arxiv.org/abs/1707.07012
117
+
118
  NesT - https://arxiv.org/abs/2105.12723
119
+
120
  NFNet-F - https://arxiv.org/abs/2102.06171
121
+
122
  NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
123
+
124
  PNasNet - https://arxiv.org/abs/1712.00559
125
+
126
  PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
127
+
128
  Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
129
+
130
  PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
131
+
132
  RegNet - https://arxiv.org/abs/2003.13678
133
+
134
  RegNetZ - https://arxiv.org/abs/2103.06877
135
+
136
  RepVGG - https://arxiv.org/abs/2101.03697
137
+
138
  ResMLP - https://arxiv.org/abs/2105.03404
139
+
140
  ResNet/ResNeXt
141
+
142
  ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
143
+
144
  ResNeXt - https://arxiv.org/abs/1611.05431
145
+
146
  'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
147
+
148
  Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
149
+
150
  Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
151
+
152
  ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
153
+
154
  Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
155
+
156
  ResNet-RS - https://arxiv.org/abs/2103.07579
157
+
158
  Res2Net - https://arxiv.org/abs/1904.01169
159
+
160
  ResNeSt - https://arxiv.org/abs/2004.08955
161
+
162
  ReXNet - https://arxiv.org/abs/2007.00992
163
+
164
  SelecSLS - https://arxiv.org/abs/1907.00837
165
+
166
  Selective Kernel Networks - https://arxiv.org/abs/1903.06586
167
+
168
  Sequencer2D - https://arxiv.org/abs/2205.01972
169
+
170
  Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
171
+
172
  Swin Transformer - https://arxiv.org/abs/2103.14030
173
+
174
  Swin Transformer V2 - https://arxiv.org/abs/2111.09883
175
+
176
  Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
177
+
178
  TResNet - https://arxiv.org/abs/2003.13630
179
+
180
+ Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/abs/2104.13840
181
+
182
  Visformer - https://arxiv.org/abs/2104.12533
183
+
184
  Vision Transformer - https://arxiv.org/abs/2010.11929
185
+
186
  VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
187
+
188
  VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
189
+
190
  Xception - https://arxiv.org/abs/1610.02357
191
+
192
  Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
193
+
194
  Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
195
+
196
  XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681
197
 
198
  ### Installation