Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,118 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- object-detection
|
5 |
+
- computer-vision
|
6 |
+
- timm
|
7 |
+
- object-classification
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
library_name: timm
|
11 |
---
|
12 |
+
|
13 |
+
### Model Description
|
14 |
+
Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
|
15 |
+
BEiT - https://arxiv.org/abs/2106.08254
|
16 |
+
Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
|
17 |
+
Bottleneck Transformers - https://arxiv.org/abs/2101.11605
|
18 |
+
CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
|
19 |
+
CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
|
20 |
+
CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
|
21 |
+
ConvNeXt - https://arxiv.org/abs/2201.03545
|
22 |
+
ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
|
23 |
+
ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
|
24 |
+
CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
|
25 |
+
DeiT - https://arxiv.org/abs/2012.12877
|
26 |
+
DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
|
27 |
+
DenseNet - https://arxiv.org/abs/1608.06993
|
28 |
+
DLA - https://arxiv.org/abs/1707.06484
|
29 |
+
DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
|
30 |
+
EdgeNeXt - https://arxiv.org/abs/2206.10589
|
31 |
+
EfficientFormer - https://arxiv.org/abs/2206.01191
|
32 |
+
EfficientNet (MBConvNet Family)
|
33 |
+
EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
|
34 |
+
EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
|
35 |
+
EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
|
36 |
+
EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
|
37 |
+
EfficientNet V2 - https://arxiv.org/abs/2104.00298
|
38 |
+
FBNet-C - https://arxiv.org/abs/1812.03443
|
39 |
+
MixNet - https://arxiv.org/abs/1907.09595
|
40 |
+
MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
|
41 |
+
MobileNet-V2 - https://arxiv.org/abs/1801.04381
|
42 |
+
Single-Path NAS - https://arxiv.org/abs/1904.02877
|
43 |
+
TinyNet - https://arxiv.org/abs/2010.14819
|
44 |
+
EVA - https://arxiv.org/abs/2211.07636
|
45 |
+
FlexiViT - https://arxiv.org/abs/2212.08013
|
46 |
+
GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
|
47 |
+
GhostNet - https://arxiv.org/abs/1911.11907
|
48 |
+
gMLP - https://arxiv.org/abs/2105.08050
|
49 |
+
GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
|
50 |
+
Halo Nets - https://arxiv.org/abs/2103.12731
|
51 |
+
HRNet - https://arxiv.org/abs/1908.07919
|
52 |
+
Inception-V3 - https://arxiv.org/abs/1512.00567
|
53 |
+
Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
|
54 |
+
Lambda Networks - https://arxiv.org/abs/2102.08602
|
55 |
+
LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
|
56 |
+
MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
|
57 |
+
MLP-Mixer - https://arxiv.org/abs/2105.01601
|
58 |
+
MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
|
59 |
+
FBNet-V3 - https://arxiv.org/abs/2006.02049
|
60 |
+
HardCoRe-NAS - https://arxiv.org/abs/2102.11646
|
61 |
+
LCNet - https://arxiv.org/abs/2109.15099
|
62 |
+
MobileViT - https://arxiv.org/abs/2110.02178
|
63 |
+
MobileViT-V2 - https://arxiv.org/abs/2206.02680
|
64 |
+
MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
|
65 |
+
NASNet-A - https://arxiv.org/abs/1707.07012
|
66 |
+
NesT - https://arxiv.org/abs/2105.12723
|
67 |
+
NFNet-F - https://arxiv.org/abs/2102.06171
|
68 |
+
NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
|
69 |
+
PNasNet - https://arxiv.org/abs/1712.00559
|
70 |
+
PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
|
71 |
+
Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
|
72 |
+
PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
|
73 |
+
RegNet - https://arxiv.org/abs/2003.13678
|
74 |
+
RegNetZ - https://arxiv.org/abs/2103.06877
|
75 |
+
RepVGG - https://arxiv.org/abs/2101.03697
|
76 |
+
ResMLP - https://arxiv.org/abs/2105.03404
|
77 |
+
ResNet/ResNeXt
|
78 |
+
ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
|
79 |
+
ResNeXt - https://arxiv.org/abs/1611.05431
|
80 |
+
'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
|
81 |
+
Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
|
82 |
+
Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
|
83 |
+
ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
|
84 |
+
Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
|
85 |
+
ResNet-RS - https://arxiv.org/abs/2103.07579
|
86 |
+
Res2Net - https://arxiv.org/abs/1904.01169
|
87 |
+
ResNeSt - https://arxiv.org/abs/2004.08955
|
88 |
+
ReXNet - https://arxiv.org/abs/2007.00992
|
89 |
+
SelecSLS - https://arxiv.org/abs/1907.00837
|
90 |
+
Selective Kernel Networks - https://arxiv.org/abs/1903.06586
|
91 |
+
Sequencer2D - https://arxiv.org/abs/2205.01972
|
92 |
+
Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
|
93 |
+
Swin Transformer - https://arxiv.org/abs/2103.14030
|
94 |
+
Swin Transformer V2 - https://arxiv.org/abs/2111.09883
|
95 |
+
Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
|
96 |
+
TResNet - https://arxiv.org/abs/2003.13630
|
97 |
+
Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf
|
98 |
+
Visformer - https://arxiv.org/abs/2104.12533
|
99 |
+
Vision Transformer - https://arxiv.org/abs/2010.11929
|
100 |
+
VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
|
101 |
+
VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
|
102 |
+
Xception - https://arxiv.org/abs/1610.02357
|
103 |
+
Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
|
104 |
+
Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
|
105 |
+
XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681
|
106 |
+
|
107 |
+
### Installation
|
108 |
+
```
|
109 |
+
pip install classifyhub
|
110 |
+
```
|
111 |
+
|
112 |
+
### ClassifyHub(Timm) Usage
|
113 |
+
```python
|
114 |
+
from classifyhub import Predictor
|
115 |
+
|
116 |
+
model = ClassifyPredictor("resnet18")
|
117 |
+
model.predict("data/plane.jpg")
|
118 |
+
```
|