|
# Model Card for mlpf-clic-clusters-v2.2.0 |
|
|
|
This model reconstructs particles in a detector, based on the tracks and calorimeter clusters recorded by the detector. |
|
|
|
## Model Details |
|
|
|
The performance is measured with respect to generator-level jets and MET computed from Pythia particles, i.e. the truth-level jets and MET. |
|
The primary difference with respect to v2.1.0 is the inclusion of the sqrt(pt) weight in the pT and energy loss term. |
|
|
|
<details> |
|
<summary>Jet performance</summary> |
|
|
|
<img src="plots_checkpoint-05-1.995116/clic_edm_ttbar_pf/jet_response_iqr_over_med_pt.png" alt="ttbar jet resolution" width="300"/> |
|
<img src="plots_checkpoint-05-1.995116/clic_edm_qq_pf/jet_response_iqr_over_med_pt.png" alt="qq jet resolution" width="300"/> |
|
<img src="plots_checkpoint-05-1.995116/clic_edm_ww_fullhad_pf/jet_response_iqr_over_med_pt.png" alt="ttbar jet resolution" width="300"/> |
|
|
|
</details> |
|
|
|
<details> |
|
<summary>MET performance</summary> |
|
|
|
<img src="plots_checkpoint-05-1.995116/clic_edm_ttbar_pf/met_response_iqr_over_med.png" alt="ttbar MET resolution" width="300"/> |
|
<img src="plots_checkpoint-05-1.995116/clic_edm_qq_pf/met_response_iqr_over_med.png" alt="qq MET resolution" width="300"/> |
|
<img src="plots_checkpoint-05-1.995116/clic_edm_ww_fullhad_pf/met_response_iqr_over_med.png" alt="ttbar MET resolution" width="300"/> |
|
|
|
</details> |
|
|
|
### Model Description |
|
|
|
- **Developed by:** Joosep Pata, Eric Wulff, Farouk Mokhtar, Mengke Zhang, David Southwick, Maria Girone, David Southwick, Javier Duarte, Michael Kagan |
|
- **Model type:** transformer |
|
- **License:** Apache License |
|
|
|
### Model Sources |
|
|
|
- **Repository:** https://github.com/jpata/particleflow/releases/tag/v2.2.0 |
|
|
|
## Uses |
|
### Direct Use |
|
|
|
This model may be used to study the physics and computational performance on ML-based reconstruction in simulation. |
|
|
|
### Out-of-Scope Use |
|
|
|
This model is not intended for physics measurements on real data. |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
The model has only been trained on simulation data and has not been validated against real data. |
|
The model has not been peer reviewed or published in a peer-reviewed journal. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
``` |
|
#get the code |
|
git clone https://github.com/jpata/particleflow |
|
cd particleflow |
|
git checkout v2.2.0 |
|
|
|
#get the models |
|
git clone https://huggingface.co/jpata/particleflow models |
|
``` |
|
|
|
## Training Details |
|
Trained on 1x A100 for 5 epochs over ~6 days. |
|
The training was continued from a checkpoint due to a runtime limit. |
|
|
|
### Training Data |
|
The following datasets were used: |
|
``` |
|
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/1/2.5.0 |
|
4.8G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/2/2.5.0 |
|
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/3/2.5.0 |
|
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/4/2.5.0 |
|
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/5/2.5.0 |
|
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/6/2.5.0 |
|
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/7/2.5.0 |
|
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/8/2.5.0 |
|
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/9/2.5.0 |
|
4.8G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/10/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/1/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/2/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/3/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/4/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/5/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/6/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/7/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/8/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/9/2.5.0 |
|
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/10/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/1/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/2/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/3/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/4/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/5/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/6/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/7/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/8/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/9/2.5.0 |
|
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/10/2.5.0 |
|
``` |
|
|
|
The datasets were generated using Key4HEP with the following scripts: |
|
- https://github.com/HEP-KBFI/key4hep-sim/releases/tag/v1.1.0 |
|
- https://github.com/HEP-KBFI/key4hep-sim/blob/v1.1.0/clic/run_sim.sh |
|
|
|
## Training Procedure |
|
|
|
```bash |
|
#!/bin/bash |
|
#SBATCH --partition gpu |
|
#SBATCH --gres gpu:a100:1 |
|
#SBATCH --mem-per-gpu 250G |
|
#SBATCH -o logs/slurm-%x-%j-%N.out |
|
|
|
IMG=/home/software/singularity/pytorch.simg:2024-12-03 |
|
cd ~/particleflow |
|
|
|
ulimit -n 100000 |
|
singularity exec -B /scratch/persistent --nv \ |
|
--env PYTHONPATH=`pwd` \ |
|
--env KERAS_BACKEND=torch \ |
|
$IMG python3 mlpf/pipeline.py --gpus 1 \ |
|
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-clic.yaml \ |
|
--train --conv-type attention \ |
|
--gpu-batch-multiplier 256 --checkpoint-freq 1 --num-workers 8 --prefetch-factor 100 --comet --ntest 2000 --test-datasets clic_edm_qq_pf |
|
``` |
|
|
|
## Evaluation |
|
```bash |
|
#!/bin/bash |
|
#SBATCH --partition gpu |
|
#SBATCH --gres gpu:a100-mig:1 |
|
#SBATCH --mem-per-gpu 100G |
|
#SBATCH -o logs/slurm-%x-%j-%N.out |
|
|
|
IMG=/home/software/singularity/pytorch.simg:2024-12-03 |
|
cd ~/particleflow |
|
|
|
WEIGHTS=experiments/pyg-clic_20250106_193536_269746/checkpoints/checkpoint-05-1.995116.pth |
|
singularity exec -B /scratch/persistent --nv \ |
|
--env PYTHONPATH=`pwd` \ |
|
--env KERAS_BACKEND=torch \ |
|
$IMG python3 mlpf/pipeline.py --gpus 1 \ |
|
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-clic.yaml \ |
|
--test --make-plots --gpu-batch-multiplier 100 --load $WEIGHTS --dtype bfloat16 --num-workers 0 --ntest 50000 |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
## Glossary |
|
|
|
- PF: particle flow reconstruction |
|
- MLPF: machine learning for particle flow |
|
- CLIC: Compact Linear Collider |
|
|
|
## Model Card Contact |
|
|
|
Joosep Pata, [email protected] |
|
|