Joosep Pata
commited on
Commit
·
6c752bd
1
Parent(s):
54070c0
add readme
Browse files
clic/clusters/v2.2.0/pyg-clic_20250106_193536_269746/README.md
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Card for mlpf-clic-clusters-v2.2.0
|
2 |
+
|
3 |
+
This model reconstructs particles in a detector, based on the tracks and calorimeter clusters recorded by the detector.
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
|
7 |
+
The performance is measured with respect to generator-level jets and MET computed from Pythia particles, i.e. the truth-level jets and MET.
|
8 |
+
The primary difference with respect to v2.1.0 is the inclusion of the sqrt(pt) weight in the pT and energy loss term.
|
9 |
+
|
10 |
+
<details>
|
11 |
+
<summary>Jet performance</summary>
|
12 |
+
|
13 |
+
<img src="plots_checkpoint-05-1.995116/clic_edm_ttbar_pf/jet_response_iqr_over_med_pt.png" alt="ttbar jet resolution" width="300"/>
|
14 |
+
<img src="plots_checkpoint-05-1.995116/clic_edm_qq_pf/jet_response_iqr_over_med_pt.png" alt="qq jet resolution" width="300"/>
|
15 |
+
<img src="plots_checkpoint-05-1.995116/clic_edm_ww_fullhad_pf/jet_response_iqr_over_med_pt.png" alt="ttbar jet resolution" width="300"/>
|
16 |
+
|
17 |
+
</details>
|
18 |
+
|
19 |
+
<details>
|
20 |
+
<summary>MET performance</summary>
|
21 |
+
|
22 |
+
<img src="plots_checkpoint-05-1.995116/clic_edm_ttbar_pf/met_response_iqr_over_med.png" alt="ttbar MET resolution" width="300"/>
|
23 |
+
<img src="plots_checkpoint-05-1.995116/clic_edm_qq_pf/met_response_iqr_over_med.png" alt="qq MET resolution" width="300"/>
|
24 |
+
<img src="plots_checkpoint-05-1.995116/clic_edm_ww_fullhad_pf/met_response_iqr_over_med.png" alt="ttbar MET resolution" width="300"/>
|
25 |
+
|
26 |
+
</details>
|
27 |
+
|
28 |
+
### Model Description
|
29 |
+
|
30 |
+
- **Developed by:** Joosep Pata, Eric Wulff, Farouk Mokhtar, Mengke Zhang, David Southwick, Maria Girone, David Southwick, Javier Duarte, Michael Kagan
|
31 |
+
- **Model type:** transformer
|
32 |
+
- **License:** Apache License
|
33 |
+
|
34 |
+
### Model Sources
|
35 |
+
|
36 |
+
- **Repository:** https://github.com/jpata/particleflow/releases/tag/v2.2.0
|
37 |
+
|
38 |
+
## Uses
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
This model may be used to study the physics and computational performance on ML-based reconstruction in simulation.
|
42 |
+
|
43 |
+
### Out-of-Scope Use
|
44 |
+
|
45 |
+
This model is not intended for physics measurements on real data.
|
46 |
+
|
47 |
+
## Bias, Risks, and Limitations
|
48 |
+
|
49 |
+
The model has only been trained on simulation data and has not been validated against real data.
|
50 |
+
The model has not been peer reviewed or published in a peer-reviewed journal.
|
51 |
+
|
52 |
+
## How to Get Started with the Model
|
53 |
+
|
54 |
+
Use the code below to get started with the model.
|
55 |
+
|
56 |
+
```
|
57 |
+
#get the code
|
58 |
+
git clone https://github.com/jpata/particleflow
|
59 |
+
cd particleflow
|
60 |
+
git checkout v2.2.0
|
61 |
+
|
62 |
+
#get the models
|
63 |
+
git clone https://huggingface.co/jpata/particleflow models
|
64 |
+
```
|
65 |
+
|
66 |
+
## Training Details
|
67 |
+
Trained on 1x A100 for 5 epochs over ~6 days.
|
68 |
+
The training was continued from a checkpoint due to a runtime limit.
|
69 |
+
|
70 |
+
### Training Data
|
71 |
+
The following datasets were used:
|
72 |
+
```
|
73 |
+
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/1/2.5.0
|
74 |
+
4.8G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/2/2.5.0
|
75 |
+
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/3/2.5.0
|
76 |
+
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/4/2.5.0
|
77 |
+
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/5/2.5.0
|
78 |
+
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/6/2.5.0
|
79 |
+
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/7/2.5.0
|
80 |
+
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/8/2.5.0
|
81 |
+
4.7G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/9/2.5.0
|
82 |
+
4.8G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_qq_pf/10/2.5.0
|
83 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/1/2.5.0
|
84 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/2/2.5.0
|
85 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/3/2.5.0
|
86 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/4/2.5.0
|
87 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/5/2.5.0
|
88 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/6/2.5.0
|
89 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/7/2.5.0
|
90 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/8/2.5.0
|
91 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/9/2.5.0
|
92 |
+
9.3G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ttbar_pf/10/2.5.0
|
93 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/1/2.5.0
|
94 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/2/2.5.0
|
95 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/3/2.5.0
|
96 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/4/2.5.0
|
97 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/5/2.5.0
|
98 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/6/2.5.0
|
99 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/7/2.5.0
|
100 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/8/2.5.0
|
101 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/9/2.5.0
|
102 |
+
7.4G /scratch/persistent/joosep/tensorflow_datasets/clic_edm_ww_fullhad_pf/10/2.5.0
|
103 |
+
```
|
104 |
+
|
105 |
+
The datasets were generated using Key4HEP with the following scripts:
|
106 |
+
- https://github.com/HEP-KBFI/key4hep-sim/releases/tag/v1.1.0
|
107 |
+
- https://github.com/HEP-KBFI/key4hep-sim/blob/v1.1.0/clic/run_sim.sh
|
108 |
+
|
109 |
+
## Training Procedure
|
110 |
+
|
111 |
+
```bash
|
112 |
+
#!/bin/bash
|
113 |
+
#SBATCH --partition gpu
|
114 |
+
#SBATCH --gres gpu:a100:1
|
115 |
+
#SBATCH --mem-per-gpu 250G
|
116 |
+
#SBATCH -o logs/slurm-%x-%j-%N.out
|
117 |
+
|
118 |
+
IMG=/home/software/singularity/pytorch.simg:2024-12-03
|
119 |
+
cd ~/particleflow
|
120 |
+
|
121 |
+
ulimit -n 100000
|
122 |
+
singularity exec -B /scratch/persistent --nv \
|
123 |
+
--env PYTHONPATH=`pwd` \
|
124 |
+
--env KERAS_BACKEND=torch \
|
125 |
+
$IMG python3 mlpf/pipeline.py --gpus 1 \
|
126 |
+
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-clic.yaml \
|
127 |
+
--train --conv-type attention \
|
128 |
+
--gpu-batch-multiplier 256 --checkpoint-freq 1 --num-workers 8 --prefetch-factor 100 --comet --ntest 2000 --test-datasets clic_edm_qq_pf
|
129 |
+
```
|
130 |
+
|
131 |
+
## Evaluation
|
132 |
+
```bash
|
133 |
+
#!/bin/bash
|
134 |
+
#SBATCH --partition gpu
|
135 |
+
#SBATCH --gres gpu:a100-mig:1
|
136 |
+
#SBATCH --mem-per-gpu 100G
|
137 |
+
#SBATCH -o logs/slurm-%x-%j-%N.out
|
138 |
+
|
139 |
+
IMG=/home/software/singularity/pytorch.simg:2024-12-03
|
140 |
+
cd ~/particleflow
|
141 |
+
|
142 |
+
WEIGHTS=experiments/pyg-clic_20250106_193536_269746/checkpoints/checkpoint-05-1.995116.pth
|
143 |
+
singularity exec -B /scratch/persistent --nv \
|
144 |
+
--env PYTHONPATH=`pwd` \
|
145 |
+
--env KERAS_BACKEND=torch \
|
146 |
+
$IMG python3 mlpf/pipeline.py --gpus 1 \
|
147 |
+
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-clic.yaml \
|
148 |
+
--test --make-plots --gpu-batch-multiplier 100 --load $WEIGHTS --dtype bfloat16 --num-workers 0 --ntest 50000
|
149 |
+
```
|
150 |
+
|
151 |
+
|
152 |
+
## Citation
|
153 |
+
|
154 |
+
## Glossary
|
155 |
+
|
156 |
+
- PF: particle flow reconstruction
|
157 |
+
- MLPF: machine learning for particle flow
|
158 |
+
- CLIC: Compact Linear Collider
|
159 |
+
|
160 |
+
## Model Card Contact
|
161 |
+
|
162 |
+
Joosep Pata, [email protected]
|