tags: | |
- Taxi-v3 | |
- q-learning | |
- reinforcement-learning | |
- custom-implementation | |
model-index: | |
- name: drl-course-unit-02-taxi-v3 | |
results: | |
- task: | |
type: reinforcement-learning | |
name: reinforcement-learning | |
dataset: | |
name: Taxi-v3 | |
type: Taxi-v3 | |
metrics: | |
- type: mean_reward | |
value: 7.56 +/- 2.71 | |
name: mean_reward | |
verified: false | |
# **Q-Learning** Agent playing1 **Taxi-v3** | |
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . | |
## Usage | |
```python | |
import gymnasium as gym | |
import pickle5 as pickle | |
from huggingface_sb3 import load_from_hub | |
from hf_course_code import evaluate_agent # Code from the course https://huggingface.co/learn/deep-rl-course/unit2/hands-on#the-evaluation-method- | |
model_pickle = load_from_hub(repo_id="jostyposty/drl-course-unit-02-taxi-v3", filename="q-learning.pkl") | |
with open(model_pickle, "rb") as f: | |
model = pickle.load(f) | |
env = gym.make(model["env_id"]) | |
mean_reward, std_reward = evaluate_agent( | |
env, | |
model["max_steps"], | |
model["n_eval_episodes"], | |
model["qtable"], | |
model["eval_seed"], | |
) | |
result = mean_reward - std_reward | |
print(f"Result={result:.2f}, Mean_reward={mean_reward:.2f} +/- {std_reward:.2f}") | |
``` | |