--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: drl-course-unit-02-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python import gymnasium as gym import pickle5 as pickle from huggingface_sb3 import load_from_hub from hf_course_code import evaluate_agent # Code from the course https://huggingface.co/learn/deep-rl-course/unit2/hands-on#the-evaluation-method- model_pickle = load_from_hub(repo_id="jostyposty/drl-course-unit-02-taxi-v3", filename="q-learning.pkl") with open(model_pickle, "rb") as f: model = pickle.load(f) env = gym.make(model["env_id"]) mean_reward, std_reward = evaluate_agent( env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"], ) result = mean_reward - std_reward print(f"Result={result:.2f}, Mean_reward={mean_reward:.2f} +/- {std_reward:.2f}") ```