|
--- |
|
library_name: transformers |
|
language: |
|
- my |
|
- en |
|
--- |
|
|
|
# Burmese-Bert |
|
|
|
Burmese-Bert is a Bilingual Mask Language Model based on "bert-large-uncased". |
|
|
|
The architecture is based on bidirectional encoder representations from transformers. |
|
|
|
Supports English and Burmese language. |
|
|
|
## Model Details |
|
|
|
Coming Soon |
|
|
|
### Model Description |
|
|
|
- **Developed by:** Min Si Thu |
|
- **Model type:** bidirectional encoder representations from transformers |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [More Information Needed] |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
- Mask Filling Language Model |
|
- Burmese Natural Language Understanding |
|
|
|
### How to use |
|
|
|
```shell |
|
# install the dependencies |
|
pip install transformers |
|
``` |
|
|
|
```python |
|
from transformers import AutoModelForMaskedLM,AutoTokenizer |
|
|
|
model_checkpoint = "jojo-ai-mst/BurmeseBert" |
|
model = AutoModelForMaskedLM.from_pretrained(model_checkpoint) |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) |
|
|
|
text = "This is a great [MASK]." |
|
|
|
import torch |
|
|
|
inputs = tokenizer(text, return_tensors="pt") |
|
token_logits = model(**inputs).logits |
|
# Find the location of [MASK] and extract its logits |
|
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] |
|
mask_token_logits = token_logits[0, mask_token_index, :] |
|
# Pick the [MASK] candidates with the highest logits |
|
top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist() |
|
|
|
for token in top_5_tokens: |
|
print(f"'>>> {text.replace(tokenizer.mask_token, tokenizer.decode([token]))}'") |
|
``` |
|
|
|
## Citation [optional] |
|
|
|
Coming Soon |