File size: 1,826 Bytes
460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 9e557cb 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 460875b 76e45d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
language:
- my
- en
---
# Burmese-Bert
Burmese-Bert is a Bilingual Mask Language Model based on "bert-large-uncased".
The architecture is based on bidirectional encoder representations from transformers.
Supports English and Burmese language.
## Model Details
Coming Soon
### Model Description
- **Developed by:** Min Si Thu
- **Model type:** bidirectional encoder representations from transformers
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
- Mask Filling Language Model
- Burmese Natural Language Understanding
### How to use
```shell
# install the dependencies
pip install transformers
```
```python
from transformers import AutoModelForMaskedLM,AutoTokenizer
model_checkpoint = "jojo-ai-mst/BurmeseBert"
model = AutoModelForMaskedLM.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
text = "This is a great [MASK]."
import torch
inputs = tokenizer(text, return_tensors="pt")
token_logits = model(**inputs).logits
# Find the location of [MASK] and extract its logits
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
mask_token_logits = token_logits[0, mask_token_index, :]
# Pick the [MASK] candidates with the highest logits
top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
for token in top_5_tokens:
print(f"'>>> {text.replace(tokenizer.mask_token, tokenizer.decode([token]))}'")
```
## Citation [optional]
Coming Soon |