jimregan's picture
End of training
195e419 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-large-xlsr-53-dialect-classifier
    results: []

wav2vec2-large-xlsr-53-dialect-classifier

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3693
  • Accuracy: 0.3605

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3719 0.98 21 1.3693 0.3605
1.371 2.0 43 1.3652 0.3605
1.3638 2.98 64 1.3588 0.3605
1.3571 4.0 86 1.3508 0.3605
1.3446 4.98 107 1.3440 0.3605
1.3399 6.0 129 1.3388 0.3605
1.3303 6.98 150 1.3340 0.3605
1.3305 8.0 172 1.3305 0.3605
1.334 8.98 193 1.3267 0.3605
1.3303 10.0 215 1.3232 0.3605
1.3241 10.98 236 1.3205 0.3605
1.317 12.0 258 1.3183 0.3605
1.3239 12.98 279 1.3161 0.3605
1.3169 14.0 301 1.3144 0.3605
1.3129 14.98 322 1.3128 0.3605
1.3112 16.0 344 1.3115 0.3605
1.3231 16.98 365 1.3107 0.3605
1.3115 18.0 387 1.3099 0.3605
1.3082 18.98 408 1.3092 0.3605
1.3228 20.0 430 1.3085 0.3605
1.2872 20.98 451 1.3080 0.3605
1.2744 22.0 473 1.3075 0.3605
1.2835 22.98 494 1.3070 0.3605
1.3213 24.0 516 1.3068 0.3605
1.3112 24.98 537 1.3065 0.3605
1.3047 26.0 559 1.3062 0.3605
1.29 26.98 580 1.3061 0.3605
1.3114 28.0 602 1.3060 0.3605
1.3123 28.98 623 1.3060 0.3605
1.3217 29.3 630 1.3060 0.3605

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2