File size: 3,341 Bytes
195e419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-xlsr-53-dialect-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-dialect-classifier
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3693
- Accuracy: 0.3605
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3719 | 0.98 | 21 | 1.3693 | 0.3605 |
| 1.371 | 2.0 | 43 | 1.3652 | 0.3605 |
| 1.3638 | 2.98 | 64 | 1.3588 | 0.3605 |
| 1.3571 | 4.0 | 86 | 1.3508 | 0.3605 |
| 1.3446 | 4.98 | 107 | 1.3440 | 0.3605 |
| 1.3399 | 6.0 | 129 | 1.3388 | 0.3605 |
| 1.3303 | 6.98 | 150 | 1.3340 | 0.3605 |
| 1.3305 | 8.0 | 172 | 1.3305 | 0.3605 |
| 1.334 | 8.98 | 193 | 1.3267 | 0.3605 |
| 1.3303 | 10.0 | 215 | 1.3232 | 0.3605 |
| 1.3241 | 10.98 | 236 | 1.3205 | 0.3605 |
| 1.317 | 12.0 | 258 | 1.3183 | 0.3605 |
| 1.3239 | 12.98 | 279 | 1.3161 | 0.3605 |
| 1.3169 | 14.0 | 301 | 1.3144 | 0.3605 |
| 1.3129 | 14.98 | 322 | 1.3128 | 0.3605 |
| 1.3112 | 16.0 | 344 | 1.3115 | 0.3605 |
| 1.3231 | 16.98 | 365 | 1.3107 | 0.3605 |
| 1.3115 | 18.0 | 387 | 1.3099 | 0.3605 |
| 1.3082 | 18.98 | 408 | 1.3092 | 0.3605 |
| 1.3228 | 20.0 | 430 | 1.3085 | 0.3605 |
| 1.2872 | 20.98 | 451 | 1.3080 | 0.3605 |
| 1.2744 | 22.0 | 473 | 1.3075 | 0.3605 |
| 1.2835 | 22.98 | 494 | 1.3070 | 0.3605 |
| 1.3213 | 24.0 | 516 | 1.3068 | 0.3605 |
| 1.3112 | 24.98 | 537 | 1.3065 | 0.3605 |
| 1.3047 | 26.0 | 559 | 1.3062 | 0.3605 |
| 1.29 | 26.98 | 580 | 1.3061 | 0.3605 |
| 1.3114 | 28.0 | 602 | 1.3060 | 0.3605 |
| 1.3123 | 28.98 | 623 | 1.3060 | 0.3605 |
| 1.3217 | 29.3 | 630 | 1.3060 | 0.3605 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
|