|
This model has been trained on massive Chinese plain-text open-domain dialogues following the approach described in [Re$^3$Dial: Retrieve, Reorganize and Rescale Conversations for Long-Turn Open-Domain Dialogue Pre-training](https://arxiv.org/abs/2305.02606). The associated Github repository is available here https://github.com/thu-coai/Re3Dial. |
|
|
|
### Usage |
|
|
|
```python |
|
from transformers import BertTokenizer, BertModel |
|
import torch |
|
|
|
|
|
def get_embedding(encoder, inputs): |
|
outputs = encoder(**inputs) |
|
pooled_output = outputs[0][:, 0, :] |
|
return pooled_output |
|
|
|
tokenizer = BertTokenizer.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-query') |
|
tokenizer.add_tokens(['<uttsep>']) |
|
query_encoder = BertModel.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-query') |
|
context_encoder = BertModel.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-context') |
|
|
|
query = '你好<uttsep>好久不见,最近在干嘛' |
|
context = '正在准备考试<uttsep>是什么考试呀,很辛苦吧' |
|
|
|
query_inputs = tokenizer([query], return_tensors='pt') |
|
context_inputs = tokenizer([context], return_tensors='pt') |
|
|
|
query_embedding = get_embedding(query_encoder, query_inputs) |
|
context_embedding = get_embedding(context_encoder, context_inputs) |
|
|
|
score = torch.cosine_similarity(query_embedding, context_embedding, dim=1) |
|
|
|
print('similarity score = ', score) |
|
``` |