jiaxin-wen
commited on
Commit
·
230e52a
1
Parent(s):
7bfd512
initial commit
Browse files
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This model has been trained on massive Chinese plain-text open-domain dialogues following the approach described in [Re$^3$Dial: Retrieve, Reorganize and Rescale Conversations for Long-Turn Open-Domain Dialogue Pre-training](https://arxiv.org/abs/2305.02606). The associated Github repository is available here https://github.com/thu-coai/Re3Dial.
|
2 |
+
|
3 |
+
### Usage
|
4 |
+
|
5 |
+
```python
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
def get_embedding(encoder, inputs):
|
11 |
+
outputs = encoder(**inputs)
|
12 |
+
pooled_output = outputs[0][:, 0, :]
|
13 |
+
return pooled_output
|
14 |
+
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-query')
|
16 |
+
tokenizer.add_tokens(['<uttsep>'])
|
17 |
+
query_encoder = BertModel.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-query')
|
18 |
+
context_encoder = BertModel.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-context')
|
19 |
+
|
20 |
+
query = '你好<uttsep>好久不见,最近在干嘛'
|
21 |
+
context = '正在准备考试<uttsep>是什么考试呀,很辛苦吧'
|
22 |
+
|
23 |
+
query_inputs = tokenizer([query], return_tensors='pt')
|
24 |
+
context_inputs = tokenizer([context], return_tensors='pt')
|
25 |
+
|
26 |
+
query_embedding = get_embedding(query_encoder, query_inputs)
|
27 |
+
context_embedding = get_embedding(context_encoder, context_inputs)
|
28 |
+
|
29 |
+
score = torch.cosine_similarity(query_embedding, context_embedding, dim=1)
|
30 |
+
|
31 |
+
print('similarity score = ', score)
|
32 |
+
```
|