ko-sbert-nli / README.md
jhgan's picture
updated README.md
7f05133
|
raw
history blame
2.62 kB
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# ko-sbert-nli
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
λͺ¨λΈμ„ μ‚¬μš©ν•˜κΈ° μœ„ν•΄μ„œλŠ” `ko-sentence-transformers` λ₯Ό μ„€μΉ˜ν•΄μ•Ό ν•©λ‹ˆλ‹€.
```
pip install -U ko-sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["μ•ˆλ…•ν•˜μ„Έμš”?", "ν•œκ΅­μ–΄ λ¬Έμž₯ μž„λ² λ”©μ„ μœ„ν•œ λ²„νŠΈ λͺ¨λΈμž…λ‹ˆλ‹€."]
model = SentenceTransformer('ko-sbert-nli')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
KorNLI ν•™μŠ΅ λ°μ΄ν„°μ…‹μœΌλ‘œ ν•™μŠ΅ν•œ ν›„ KorSTS 평가 λ°μ΄ν„°μ…‹μœΌλ‘œ ν‰κ°€ν•œ κ²°κ³Όμž…λ‹ˆλ‹€.
<!--- Describe how your model was evaluated -->
λͺ¨λΈ|ν•™μŠ΅ 데이터|Cosine Pearson|Cosine Spearman|Euclidean Pearson|Euclidean Spearman|Manhattan Pearson|Manhattan Spearman|Dot Pearson|Dot Spearman|
|:----:|:------------------------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
SKT-KoBERT|NLI|82.03|82.36|80.06|79.85|80.08|79.91|75.76|74.72
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8886 with parameters:
```
{'batch_size': 64}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 888,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 889,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->