File size: 2,623 Bytes
3a42363
 
 
 
 
 
 
 
7f05133
3a42363
 
 
 
 
 
 
7f05133
3a42363
 
7f05133
3a42363
 
 
 
 
 
7f05133
3a42363
7f05133
3a42363
 
 
 
 
 
 
 
7f05133
3a42363
7f05133
 
 
 
3a42363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f05133
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---

# ko-sbert-nli

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

λͺ¨λΈμ„ μ‚¬μš©ν•˜κΈ° μœ„ν•΄μ„œλŠ” `ko-sentence-transformers` λ₯Ό μ„€μΉ˜ν•΄μ•Ό ν•©λ‹ˆλ‹€.

```
pip install -U ko-sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["μ•ˆλ…•ν•˜μ„Έμš”?", "ν•œκ΅­μ–΄ λ¬Έμž₯ μž„λ² λ”©μ„ μœ„ν•œ λ²„νŠΈ λͺ¨λΈμž…λ‹ˆλ‹€."]

model = SentenceTransformer('ko-sbert-nli')
embeddings = model.encode(sentences)
print(embeddings)
```



## Evaluation Results

KorNLI ν•™μŠ΅ λ°μ΄ν„°μ…‹μœΌλ‘œ ν•™μŠ΅ν•œ ν›„ KorSTS 평가 λ°μ΄ν„°μ…‹μœΌλ‘œ ν‰κ°€ν•œ κ²°κ³Όμž…λ‹ˆλ‹€.

<!--- Describe how your model was evaluated -->
λͺ¨λΈ|ν•™μŠ΅ 데이터|Cosine Pearson|Cosine Spearman|Euclidean Pearson|Euclidean Spearman|Manhattan Pearson|Manhattan Spearman|Dot Pearson|Dot Spearman|
|:----:|:------------------------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
SKT-KoBERT|NLI|82.03|82.36|80.06|79.85|80.08|79.91|75.76|74.72 

## Training
The model was trained with the parameters:

**DataLoader**:

`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8886 with parameters:
```
{'batch_size': 64}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 1,
    "evaluation_steps": 888,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 889,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->