layoutlm-CC-7 / README.md
jfrish's picture
End of training
1ff7a12 verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlm-CC-7
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: layoutlmv3
          type: layoutlmv3
          config: FormsDataset
          split: test
          args: FormsDataset
        metrics:
          - name: Precision
            type: precision
            value: 0.12529002320185614
          - name: Recall
            type: recall
            value: 0.20224719101123595
          - name: F1
            type: f1
            value: 0.15472779369627507
          - name: Accuracy
            type: accuracy
            value: 0.19654427645788336

layoutlm-CC-7

This model is a fine-tuned version of microsoft/layoutlmv3-base on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1612
  • Precision: 0.1253
  • Recall: 0.2022
  • F1: 0.1547
  • Accuracy: 0.1965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
4.8141 1.0 1 4.7205 0.0921 0.1311 0.1082 0.0821
4.7028 2.0 2 4.6365 0.1414 0.2022 0.1664 0.1425
4.6011 3.0 3 4.5617 0.1230 0.2022 0.1530 0.1274
4.5126 4.0 4 4.4931 0.1174 0.2022 0.1486 0.1231
4.4376 5.0 5 4.4390 0.1166 0.2022 0.1479 0.1166
4.3778 6.0 6 4.3926 0.1166 0.2022 0.1479 0.1188
4.3224 7.0 7 4.3454 0.1166 0.2022 0.1479 0.1210
4.2658 8.0 8 4.3058 0.1166 0.2022 0.1479 0.1253
4.2182 9.0 9 4.2708 0.1179 0.2022 0.1490 0.1425
4.1796 10.0 10 4.2415 0.1208 0.2022 0.1513 0.1641
4.1423 11.0 11 4.2165 0.1222 0.2022 0.1523 0.1728
4.1197 12.0 12 4.1951 0.1230 0.2022 0.1530 0.1793
4.0976 13.0 13 4.1782 0.1241 0.2022 0.1538 0.1922
4.0801 14.0 14 4.1669 0.1253 0.2022 0.1547 0.1965
4.0627 15.0 15 4.1612 0.1253 0.2022 0.1547 0.1965

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3