layoutlm-CC-7

This model is a fine-tuned version of microsoft/layoutlmv3-base on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1612
  • Precision: 0.1253
  • Recall: 0.2022
  • F1: 0.1547
  • Accuracy: 0.1965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
4.8141 1.0 1 4.7205 0.0921 0.1311 0.1082 0.0821
4.7028 2.0 2 4.6365 0.1414 0.2022 0.1664 0.1425
4.6011 3.0 3 4.5617 0.1230 0.2022 0.1530 0.1274
4.5126 4.0 4 4.4931 0.1174 0.2022 0.1486 0.1231
4.4376 5.0 5 4.4390 0.1166 0.2022 0.1479 0.1166
4.3778 6.0 6 4.3926 0.1166 0.2022 0.1479 0.1188
4.3224 7.0 7 4.3454 0.1166 0.2022 0.1479 0.1210
4.2658 8.0 8 4.3058 0.1166 0.2022 0.1479 0.1253
4.2182 9.0 9 4.2708 0.1179 0.2022 0.1490 0.1425
4.1796 10.0 10 4.2415 0.1208 0.2022 0.1513 0.1641
4.1423 11.0 11 4.2165 0.1222 0.2022 0.1523 0.1728
4.1197 12.0 12 4.1951 0.1230 0.2022 0.1530 0.1793
4.0976 13.0 13 4.1782 0.1241 0.2022 0.1538 0.1922
4.0801 14.0 14 4.1669 0.1253 0.2022 0.1547 0.1965
4.0627 15.0 15 4.1612 0.1253 0.2022 0.1547 0.1965

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
103
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for jfrish/layoutlm-CC-7

Finetuned
(225)
this model

Evaluation results