jaypratap's picture
Model save
0b9ef91 verified
metadata
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-pretraining-2024_03_25-classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7648975791433892

vit-pretraining-2024_03_25-classifier

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5083
  • Accuracy: 0.7649

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6422 1.0 537 0.6409 0.6560
0.5509 2.0 1074 0.5966 0.6862
0.5123 3.0 1611 0.5743 0.7044
0.5237 4.0 2148 0.5523 0.7188
0.5589 5.0 2685 0.5352 0.7370
0.5671 6.0 3222 0.5317 0.7407
0.5247 7.0 3759 0.5228 0.7486
0.4855 8.0 4296 0.5422 0.7374
0.5122 9.0 4833 0.5195 0.7477
0.5381 10.0 5370 0.5277 0.7398
0.5465 11.0 5907 0.5213 0.7514
0.4552 12.0 6444 0.5300 0.7495
0.5188 13.0 6981 0.5107 0.7505
0.5056 14.0 7518 0.5075 0.7579
0.4759 15.0 8055 0.5077 0.7644
0.6042 16.0 8592 0.5143 0.7602
0.4002 17.0 9129 0.5184 0.7612
0.4664 18.0 9666 0.5072 0.7630
0.4653 19.0 10203 0.5103 0.7626
0.4096 20.0 10740 0.5083 0.7649

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2