jaypratap commited on
Commit
0b9ef91
·
verified ·
1 Parent(s): 8d728e8

Model save

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - imagefolder
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vit-pretraining-2024_03_25-classifier
10
+ results:
11
+ - task:
12
+ name: Image Classification
13
+ type: image-classification
14
+ dataset:
15
+ name: imagefolder
16
+ type: imagefolder
17
+ config: default
18
+ split: train
19
+ args: default
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.7648975791433892
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # vit-pretraining-2024_03_25-classifier
30
+
31
+ This model was trained from scratch on the imagefolder dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.5083
34
+ - Accuracy: 0.7649
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 5e-06
54
+ - train_batch_size: 4
55
+ - eval_batch_size: 4
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 4
58
+ - total_train_batch_size: 16
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.2
62
+ - num_epochs: 20
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
68
+ | 0.6422 | 1.0 | 537 | 0.6409 | 0.6560 |
69
+ | 0.5509 | 2.0 | 1074 | 0.5966 | 0.6862 |
70
+ | 0.5123 | 3.0 | 1611 | 0.5743 | 0.7044 |
71
+ | 0.5237 | 4.0 | 2148 | 0.5523 | 0.7188 |
72
+ | 0.5589 | 5.0 | 2685 | 0.5352 | 0.7370 |
73
+ | 0.5671 | 6.0 | 3222 | 0.5317 | 0.7407 |
74
+ | 0.5247 | 7.0 | 3759 | 0.5228 | 0.7486 |
75
+ | 0.4855 | 8.0 | 4296 | 0.5422 | 0.7374 |
76
+ | 0.5122 | 9.0 | 4833 | 0.5195 | 0.7477 |
77
+ | 0.5381 | 10.0 | 5370 | 0.5277 | 0.7398 |
78
+ | 0.5465 | 11.0 | 5907 | 0.5213 | 0.7514 |
79
+ | 0.4552 | 12.0 | 6444 | 0.5300 | 0.7495 |
80
+ | 0.5188 | 13.0 | 6981 | 0.5107 | 0.7505 |
81
+ | 0.5056 | 14.0 | 7518 | 0.5075 | 0.7579 |
82
+ | 0.4759 | 15.0 | 8055 | 0.5077 | 0.7644 |
83
+ | 0.6042 | 16.0 | 8592 | 0.5143 | 0.7602 |
84
+ | 0.4002 | 17.0 | 9129 | 0.5184 | 0.7612 |
85
+ | 0.4664 | 18.0 | 9666 | 0.5072 | 0.7630 |
86
+ | 0.4653 | 19.0 | 10203 | 0.5103 | 0.7626 |
87
+ | 0.4096 | 20.0 | 10740 | 0.5083 | 0.7649 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.39.0.dev0
93
+ - Pytorch 2.2.1+cu121
94
+ - Datasets 2.18.0
95
+ - Tokenizers 0.15.2