|
--- |
|
license: apache-2.0 |
|
base_model: bert-large-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: baseline_nli_bert-large |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# baseline_nli_bert-large |
|
|
|
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9293 |
|
- Accuracy: 0.6163 |
|
- Precision: 0.6163 |
|
- Recall: 0.6163 |
|
- F1 Score: 0.6185 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 101 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:| |
|
| 1.0447 | 1.0 | 2583 | 0.9867 | 0.4602 | 0.4602 | 0.4602 | 0.4166 | |
|
| 0.9632 | 2.0 | 5166 | 0.9132 | 0.5926 | 0.5926 | 0.5926 | 0.5965 | |
|
| 0.9063 | 3.0 | 7749 | 0.8976 | 0.6076 | 0.6076 | 0.6076 | 0.6116 | |
|
| 0.846 | 4.0 | 10332 | 0.8826 | 0.6218 | 0.6218 | 0.6218 | 0.6212 | |
|
| 0.7975 | 5.0 | 12915 | 0.9189 | 0.6136 | 0.6136 | 0.6136 | 0.6169 | |
|
| 0.7605 | 6.0 | 15498 | 0.9293 | 0.6163 | 0.6163 | 0.6163 | 0.6185 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|