jalaluddin94's picture
End of training
206f47d
metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: baseline_nli_bert-large
    results: []

baseline_nli_bert-large

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9293
  • Accuracy: 0.6163
  • Precision: 0.6163
  • Recall: 0.6163
  • F1 Score: 0.6185

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 101
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
1.0447 1.0 2583 0.9867 0.4602 0.4602 0.4602 0.4166
0.9632 2.0 5166 0.9132 0.5926 0.5926 0.5926 0.5965
0.9063 3.0 7749 0.8976 0.6076 0.6076 0.6076 0.6116
0.846 4.0 10332 0.8826 0.6218 0.6218 0.6218 0.6212
0.7975 5.0 12915 0.9189 0.6136 0.6136 0.6136 0.6169
0.7605 6.0 15498 0.9293 0.6163 0.6163 0.6163 0.6185

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3