distilbert_ner / README.md
jakka's picture
update model card README.md
256ae61
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert_ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: train
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.918918918918919
          - name: Recall
            type: recall
            value: 0.9356751314464705
          - name: F1
            type: f1
            value: 0.9272213291946122
          - name: Accuracy
            type: accuracy
            value: 0.9830968910353154

distilbert_ner

This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0578
  • Precision: 0.9189
  • Recall: 0.9357
  • F1: 0.9272
  • Accuracy: 0.9831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0754 1.0 1756 0.0578 0.9189 0.9357 0.9272 0.9831

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1