--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert_ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.918918918918919 - name: Recall type: recall value: 0.9356751314464705 - name: F1 type: f1 value: 0.9272213291946122 - name: Accuracy type: accuracy value: 0.9830968910353154 --- # distilbert_ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0578 - Precision: 0.9189 - Recall: 0.9357 - F1: 0.9272 - Accuracy: 0.9831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0754 | 1.0 | 1756 | 0.0578 | 0.9189 | 0.9357 | 0.9272 | 0.9831 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1