metadata
library_name: transformers
base_model: m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-100k-gtzan-music-genres-finetuned-wav2vec2-ivan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.98
wav2vec2-base-100k-gtzan-music-genres-finetuned-wav2vec2-ivan
This model is a fine-tuned version of m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 1.2147
- Accuracy: 0.98
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0843 | 1.0 | 113 | 2.0074 | 0.82 |
1.7573 | 2.0 | 226 | 1.6688 | 0.89 |
1.5998 | 3.0 | 339 | 1.4663 | 0.86 |
1.3828 | 4.0 | 452 | 1.2642 | 0.96 |
1.1947 | 5.0 | 565 | 1.2147 | 0.98 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0