--- library_name: transformers base_model: m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-100k-gtzan-music-genres-finetuned-wav2vec2-ivan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.98 --- # wav2vec2-base-100k-gtzan-music-genres-finetuned-wav2vec2-ivan This model is a fine-tuned version of [m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres](https://huggingface.co/m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2147 - Accuracy: 0.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0843 | 1.0 | 113 | 2.0074 | 0.82 | | 1.7573 | 2.0 | 226 | 1.6688 | 0.89 | | 1.5998 | 3.0 | 339 | 1.4663 | 0.86 | | 1.3828 | 4.0 | 452 | 1.2642 | 0.96 | | 1.1947 | 5.0 | 565 | 1.2147 | 0.98 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0