|
--- |
|
license: cc-by-nc-4.0 |
|
pipeline_tag: image-segmentation |
|
tags: |
|
- remote sensing |
|
- sentinel2 |
|
- landsat |
|
- floods |
|
--- |
|
|
|
# ml4floods trained models |
|
|
|
This repository contains the trained models of the publication: |
|
|
|
> E. Portalés-Julià, G. Mateo-García, C. Purcell, and L. Gómez-Chova [Global flood extent segmentation in optical satellite images](https://www.nature.com/articles/s41598-023-47595-7). _Scientific Reports 13, 20316_ (2023). DOI: 10.1038/s41598-023-47595-7. |
|
|
|
We include the trained models: |
|
* **Unet multioutput** in folder `models/WF2_unetv2_all` |
|
* **Unet multioutput S2-to-L8** in folder `models/WF2_unetv2_bgriswirs` |
|
* **Unet multioutput RGBNIR** in folder `models/WF2_unetv2_rgbi` |
|
|
|
The following table shows the performance of the models in the test dataset: |
|
![metrics_ml4floods](metrics_ml4floods.png) |
|
|
|
In order to run any of these models in a Landsat or Sentinel-2 scene see the tutorial [*Inference with clouds aware floods segmentation model*](https://spaceml-org.github.io/ml4floods/content/ml4ops/HOWTO_Run_Inference_multioutput_binary.html) in the ml4floods docs. |
|
|
|
If you find this work useful please cite: |
|
|
|
``` |
|
@article{portales-julia_global_2023, |
|
title = {Global flood extent segmentation in optical satellite images}, |
|
volume = {13}, |
|
issn = {2045-2322}, |
|
doi = {10.1038/s41598-023-47595-7}, |
|
number = {1}, |
|
urldate = {2023-11-30}, |
|
journal = {Scientific Reports}, |
|
author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis}, |
|
month = nov, |
|
year = {2023}, |
|
pages = {20316}, |
|
} |
|
``` |