File size: 1,556 Bytes
433bd94
 
 
 
 
 
 
 
 
 
2a6cf9a
e7ea857
 
 
 
 
 
1b20c6f
 
 
e7ea857
6fa3174
e7ea857
 
6fa3174
e7ea857
fef51d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433bd94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
license: cc-by-nc-4.0
pipeline_tag: image-segmentation
tags:
- remote sensing
- sentinel2
- landsat
- floods
---

# ml4floods trained models

This repository contains the trained models of the publication:

> E. Portalés-Julià, G. Mateo-García, C. Purcell, and L. Gómez-Chova [Global flood extent segmentation in optical satellite images](https://www.nature.com/articles/s41598-023-47595-7). _Scientific Reports 13, 20316_ (2023). DOI: 10.1038/s41598-023-47595-7.

We include the trained models:
* **Unet multioutput** in folder `models/WF2_unetv2_all`
* **Unet multioutput S2-to-L8**  in folder `models/WF2_unetv2_bgriswirs`
* **Unet multioutput RGBNIR** in folder `models/WF2_unetv2_rgbi`

The following table shows the performance of the models in the test dataset:
![metrics_ml4floods](metrics_ml4floods.png)

In order to run any of these models in a Landsat or Sentinel-2 scene see the tutorial [*Inference with clouds aware floods segmentation model*](https://spaceml-org.github.io/ml4floods/content/ml4ops/HOWTO_Run_Inference_multioutput_binary.html) in the ml4floods docs.

If you find this work useful please cite:

```
@article{portales-julia_global_2023,
	title = {Global flood extent segmentation in optical satellite images},
	volume = {13},
	issn = {2045-2322},
	doi = {10.1038/s41598-023-47595-7},
	number = {1},
	urldate = {2023-11-30},
	journal = {Scientific Reports},
	author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis},
	month = nov,
	year = {2023},
	pages = {20316},
}
```