imTak's picture
Update README.md
abb25da verified
---
library_name: transformers
language:
- ko
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- Bingsu/zeroth-korean
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper large v3 turbo Korean - imTak
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Zeroth-Korean
type: Bingsu/zeroth-korean
args: 'config: ko, split: test'
metrics:
- name: Wer
type: wer
value: 5.270290618882698
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large v3 turbo Korean - imTak
This model is a fine-tuned version of [imTak/whisper_large_v3_ko_ft](https://huggingface.co/imTak/whisper_large_v3_ko_ft) on the Zeroth-Korean dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0670
- Wer: 5.2703
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.1068 | 0.7184 | 1000 | 0.1216 | 8.6132 |
| 0.0388 | 1.4368 | 2000 | 0.0905 | 5.3606 |
| 0.0089 | 2.1552 | 3000 | 0.0707 | 4.7282 |
| 0.0082 | 2.8736 | 4000 | 0.0670 | 5.2703 |
### Framework versions
- Transformers 4.45.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3