--- library_name: transformers language: - ko license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - Bingsu/zeroth-korean - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper large v3 turbo Korean - imTak results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Zeroth-Korean type: Bingsu/zeroth-korean args: 'config: ko, split: test' metrics: - name: Wer type: wer value: 5.270290618882698 --- # Whisper large v3 turbo Korean - imTak This model is a fine-tuned version of [imTak/whisper_large_v3_ko_ft](https://huggingface.co/imTak/whisper_large_v3_ko_ft) on the Zeroth-Korean dataset. It achieves the following results on the evaluation set: - Loss: 0.0670 - Wer: 5.2703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1068 | 0.7184 | 1000 | 0.1216 | 8.6132 | | 0.0388 | 1.4368 | 2000 | 0.0905 | 5.3606 | | 0.0089 | 2.1552 | 3000 | 0.0707 | 4.7282 | | 0.0082 | 2.8736 | 4000 | 0.0670 | 5.2703 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3